The Economics of European Regions: Theory, Empirics, and Policy

Dipartimento di Economia e Management

Davide Fiaschi Angela Parenti¹

¹davide.fiaschi@unipi.it, and aparenti@ec.unipi.it.

Regression Discontinuity Design - Thistlethwaite and Campbell (1960)

- RDD was introduced by Thistlethwaite and Campbell (1960) as a way
 of estimating treatment effects in non-experimental setting where the
 treatment is determined by whether an observed "assignment"
 variable ("forcing" variable) exceeds a known cut-off.
- They use RDD to analyse the impact of merit awards on future academic outcomes.
- They use the fact tat the allocation of awards was based on an observed test score.
- Main idea: individuals with scores just below the cut-off (who did no receive the award) were good comparisons to those just above the cut-off (who did receive the award).

RDD - Thistlethwaite and Campbell (1960) (cont.)

- This assignment generates a sharp *discontinuity* in the treatment (receiving the award) as a *function* of the test score.
- At the same time, there are no reasons, other than the merit award, for future academic outcomes to be a discontinuous function of the test score.
 - ⇒ the discontinuity jump in the outcome at the cut-off is the *causal effect* of the merit award.

Example Linear RD setup

Figure 1. Lee and Lemieux (2010).

- B' reasonable guess for Y of an individual scoring c (receiving the treatment).
- \bullet A" reasonable guess for Y for the same individual in the counterfactual (not receiving the treatment).

 $\Rightarrow B' - A''$ causal estimate.

Example Linear RD setup (cont.)

- In order of the RDD approach to work "all other factors" determining Y must be evolving "smoothly" with respect to X.
- In order to produce a reasonable guess for the treated and untreated states X=c with finite data, one has to use data away from the discontinuity
 - \Rightarrow the estimate will be dependent on the chosen *functional form*.

Sharp RDD

• In **Sharp RDD** designs the treatment status is a **deterministic** and **discontinuous** function of a covariate X_i .

$$\left\{ \begin{array}{ll} D_i = 1 & \text{if } X_i \geq c \\ D_i = 0 & \text{if } X_i < c \end{array} \right.$$

where c is a **known** threshold or cut-off.

- Once we know X_i we know D_i .
- Imbens and Lemieux (2008): there is no value of X_i at which you observe both treatment and control observations.

RDD in potential outcome framework

- Two potential outcomes $Y_i(1)$, $Y_i(0)$ so that the causal effect is $Y_i(1) Y_i(0)$.
- Fundamental problem of causal inference \Rightarrow focus on average treatment effect $E[Y_i(1) Y_i(0)]$.
- In RDD two underlying relationship between average outcome and X: $E[Y_i(1)|X]$ and $E[Y_i(0)|X]$.
- All individuals to the right of the cut-off are exposed to treatment and all those to the left are denied to treatment.
- We only observe $E[Y_i(1)|X]$ to the right of the cut-off and $E[Y_i(0)|X]$ to the left.
 - $\Rightarrow E[Y_i(1) Y_i(0)|X = c]$ is the average treatment effect!

RDD in potential outcome framework (cont.)

 Suppose that in addition potential outcomes can be described by a linear, constant effects model:

$$E[Y_i(0)|X_i] = \alpha + \beta X_i$$

$$Y_i(1) = Y_i(0) + \tau$$

• This leads to the regression:

$$Y_i = \alpha + \beta X_i + \tau D_i + \epsilon_i$$

• The key difference of this regression is that D_i is not only correlated with X_i but it is a deterministic function of X_i .

RDD as a local randomized experiment

• The randomized experiment can be thought as an RDD where the assignment variable is $X = \nu$, where ν is a randomly generated number, and the cut-off is c.

- The assignment now is random and therefore independent of potential outcomes.
- Moreover, the curves $E[Y_i(1)|X]$ and $E[Y_i(0)|X]$ are flat $(\Rightarrow$ continuous at c).
- The average causal effect is the difference in the mean value of Y just above and just below c.

Key Identifying Assumption

- Key identifying assumption: $E[Y_i(1)|X]$ and $E[Y_i(0)|X]$ are continuous in X_i at c.
- This means that all other unobserved determinants of Y are continuously related to the forcing X.
- This allows us to us average outcomes of units just below the cut-off as a valid counterfactual for units right above the cut-off variable.
- This assumption cannot be directly tested. But there are some tests
 which give suggestive evidence whether the assumption is satisfied.

Identification and interpretation - Lee and Lemieux (2010)

• How do I know whether an RDD is appropriate for my context? When are the identification assumptions plausible or implausible?

"When there is a continuously distributed stochastic error component to the assignment variable - which can occur when optimizing agents do not have precise control over the assignment variable - then the variation in the treatment will be as good as randomized in a neighbourhood around the discontinuity threshold."

- If individuals have a great control over the assignment variable we can expect that individuals on one side of the threshold to be *systematically* different from those on the other side.
- But individual will not always be able to have *precise* control.
- Precise sorting around the threshold is self-selection!

Identification and interpretation - Lee and Lemieux (2010)

Is there any way I can test those assumptions?

"Yes. As in a randomized experiment, the distribution of observed baseline covariates should not change discontinuously at the threshold."

- Although is impossible to test this directly, a discontinuity would indicate a **failure** of the identifying assumption.
- As when we want to asses whether the randomized experiment was carried out properly
- ⇒ the treatment and control groups must be similar in their characteristics.
- ullet If a lagged dependent variable is added as regressor which is pre-determined the local randomization result will imply that the lagged dependent variable will have a continuous relationship with X.

Identification and interpretation - Lee and Lemieux (2010)

3 To what extent are results from RDD generalizable?

"The RD estimand can be interpreted as a weighted average treatment effect, where the weights are the relative ex ante probability that the value of an individual's assignment variable will be in the neighbourhood of the threshold."

• If the weights are relatively similar across individuals RDD estimate is closer to the overall average treatment effect.

Sharp Regression Discontinuity - Nonlinear Case

Sometimes the trend relation $E[Y_i(0)|X]$ is nonlinear.

Sharp Regression Discontinuity - Nonlinear Case (cont.)

- Suppose the nonlinear relationship is $E[Y_i(0)|X] = f(X_i)$ for some reasonably smooth function $f(X_i)$.
- In that case we can construct RDD estimates by fitting:

$$Y_i = f(X_i) + \tau D_i + \eta_i \tag{1}$$

- There are 2 ways of approximating $f(X_i)$:
 - Use a nonparametric kernel method
 - Use a p-th order polynomial: i.e. estimate:

$$Y_i = \alpha + \beta_1 X_i + \beta_2 x_i^2 + \beta_p x_i^p + \tau D_i + \eta_i$$
 (2)

Internal Validity of RDD Estimates

- The validity of RD estimates depends crucially on the assumption that the polynomials provide an adequate representation of $E[Y_i(0)|X]$.
- If not what looks like a jump may simply be a non-linearity in $f(X_i)$ that the polynomials have not accounted for.

Figure 6.1.1. Angrist and Pischke (2010).

Fuzzy RDD

- The treatment is determined partly by whether the assignment variable crosses a cut-off point (imperfect compliance).
- Fuzzy RD exploits discontinuities in the probability of treatment conditional on a covariate.
- The discontinuity becomes an instrumental variable for treatment status.
- D_i is no longer deterministically related to crossing a threshold but there is a jump in the *probability* of treatment at c.

$$P[D_i = 1|X_i] = \begin{cases} g_1(X_i) & \text{if } X_i \ge c \\ g_0(X_i) & \text{if } X_i < c \end{cases}$$

where $g_1(X_i) \neq g_0(X_i)$.

• $g_1(X_i)$ and $g_0(X_i)$ can be anything as long as they differ at c.

Fuzzy RDD (cont.)

 The relationship between the probability of treatment and X_i can be written as:

$$P[D_i = 1|X_i] = g_0(X_i) + [g_1(X_i) - g_0(X_i)] T_i$$

where $T_i = 1(X_i \geq c)$.

- T_i is used as an instrument for D_i .
- The estimated first stage would be:

$$D_{i} = \gamma_{0} + \gamma_{1}X_{i} + \gamma_{2}X_{i}^{2} + \dots + \gamma_{p}X_{i}^{p} + \pi T_{i} + \nu_{1i}$$

• The fuzzy RDD reduced form is:

$$Y_i = \mu + \phi_1 X_i + \phi_2 X_i^2 + \dots + \phi_p X_i^p + \tau \pi T_i + \nu_{2i}$$

Practical Tips for Estimation

- I. Graphical Analysis in RD Designs
- II. Estimating the f-Function
- III. Testing the Validity of the RD Design

I. Graphical Analysis in RD Designs

① Outcome by forcing variable (X_i) :

- The standard graph showing the discontinuity in the outcome variable.
- Construct bins and average the outcome within bins on both sides of the cut-off.
- Plot the forcing variable X_i on the horizontal axis and the average of Y_i for each bin on the vertical axis.
- Optionally also plot a relatively flexible regression line on top of the bin means.
- Inspect whether there is a discontinuity at c.
- Inspect whether there are other unexpected discontinuities.
- As robustness for the choice of the bandwidth look at different bin sizes when constructing these graphs (Lee and Lemieux (2010) for details).

I. Graphical Analysis in RD Designs: Outcome by forcing variable

Figure 6. Lee and Lemieux (2010): Bandwidth of 0.02 (50 bins)

Figure 8. Lee and Lemieux (2010): Bandwidth of 0.005 (200 bins)

Figure 7. Lee and Lemieux (2010): Bandwidth of 0.01 (100 bins)

I. Graphical Analysis in RD Designs

- Probability of treatment by forcing variable if fuzzy RD.
 - In a fuzzy RD design we also check if the treatment variable jumps at c.
 - If so, there is a first stage!
- Covariates by forcing variable.
 - Construct similar graphs to the one of the outcome but using a covariate as the "outcome".
 - There should be no jump in other covariates (e.g., lagged outcome variable).
 - If the covariates would jump at the discontinuity one would doubt the identifying assumption.

I. Graphical Analysis in RD Designs: Covariates by forcing variable

Figure 17. Lee and Lemieux (2010): Discontinuity in Baseline Covariate (on lagged outcome variable)

I. Graphical Analysis in RD Designs

1 The density of the forcing variable.

- Plot the number of observations in each bin.
- This plot allows to investigate whether there is a discontinuity in the distribution of the forcing variable at the threshold.
- This would suggest that people can manipulate the forcing variable around the threshold.
- This is an indirect test of the identifying assumption that each individual has *imprecise* control over the assignment variable.

I. Graphical Analysis in RD Designs: The density of the forcing variable

Figure 16. Lee and Lemieux (2010): Density of the Forcing Variable

II. Estimating the f-Function

- As pointed out before there are essentially two ways of approximating the $f(X_i)$:
 - Kernel regression.
 - Polynomial function.
- There is no right or wrong method. Both have advantages and disadvantages.

II. Estimating the f-Function: the kernel method

 The nonparametric kernel method has its problems in this case because you are trying to estimate regressions at the cut-off point.
 ⇒ "boundary problem":

- While the "true" effect is AB, with a certain bandwidth a rectangular kernel would estimate the effect as A'B'.
- There is therefore systematic bias with the kernel method if the $f(X_i)$ is upwards or downwards sloping.

II. Estimating the f-Function: the kernel method

- The standard solution to this problem is to run local linear regression to reduce the bias.
- The simpler case is the rectangular kernel, which amounts to estimating a standard regression over a window of width h on both sides of the cut-off.
- Other kernel might be chosen but this has little impact in practice.
- While estimating this in a given window of width h around the cut-off is straightforward it is more difficult to choose the bandwidth h.
- See Lee and Lemieux (2010) for two methods to choose the bandwidth (usual trade-off between bias and efficiency).

II. Estimating the f-Function: the polynomial method

- The polynomial method suffers from the problem that uses data far away from the cut-off to estimate the $f(X_i)$ function.
- The equivalent of choosing the right bandwidth for the polynomial method is to use the right order of polynomial.
- See Lee and Lemieux (2010) for a test on the right polynomial.
- Practically:
 - report results for both estimation types;
 - show that including higher order polynomials does not substantially affect the findings;
 - show that the results are not affected by variation in the window around the cut-off.

III. Testing the Validity of the RD Design

- Testing the continuity of the density of X
 - A discontinuity in the density suggests that there is some *manipulation* of *X* around the threshold.
- Explore the sensitivity of the results to the inclusion of baseline covariates
 - The inclusion of baseline covariates (no matter how they are correlated with outcome) should not affect the estimated discontinuity, if no-manipulation assumption holds.
 - Lee and Lemieux (2010) suggest to simply including the covariates directly, after choosing a suitable order of polynomial
 ⇒ significant changes in the estimated effect or increases in the standard errors may be an indication of a misspecified functional form.

References

- Angrist, J. D., and Pischke, J. S. (2008). Mostly harmless econometrics: An empiricist's companion. Princeton University Press.
- Becker, S. O., Egger, P. H., and Von Ehrlich, M. (2010). Going NUTS: The effect of EU Structural Funds on regional performance. *Journal of Public Economics*, 94(9), 578-590.
- Lee, D. S., and Lemieux, T. (2010). Regression Discontinuity Designs in Economics, *Journal of Economic Literature*, 48(2), 281-355.
- Pellegrini, G., Terribile, F., Tarola, O., Muccigrosso, T., and Busillo, F. (2013). Measuring the effects of European Regional Policy on economic growth: A regression discontinuity approach. *Papers in Regional Science*, 92(1), 217-233.
- Thistlethwaite, D. L., and Campbell, D. T. (1960).
 Regression-discontinuity analysis: An alternative to the ex post facto experiment. *Journal of Educational Psychology*, 51(6), 309.