The Economics of European Regions: Theory, Empirics, and Policy

Dipartimento di Economia e Management

Co-funded by the Erasmus+ Programme of the European Union

Project funded by European Commission Erasmus + Programme – Jean Monnet Action
Project number 553280-EPP-1-2015-1-IT-EPPJMO-MODULE

Davide Fiaschi Angela Parenti

September 24, 2019

1davide.fiaschi@unipi.it, and angela.parenti@unipi.it.
Many interesting features (standard of living, health, etc.) of an economy are related to its level of income, at least in the long run. This is why we mainly focus on GDP per head or GDP per capita \(\Rightarrow\) we need a theory of growth of countries/regions.

Many theories are available and generally are related to the supply side of an economy. Other theories on the demand side are available, but generally refer to short and medium run.

The main differences between these theories are in the assumptions on:
- the diffusion of technological progress (limited or not);
- the speed of factor reallocation (mobility);
- the type of technology (increasing returns to scale); and
- the type of markets (competitive versus monopolistic markets).
Solow model

Solow model is the prototype of any growth model based on the supply side. Consider the augmented version proposed by Mankiw et al. (1992). Key ingredients:

- A production function: $Y = F(K, AH)$ assumed with standard properties $F_K > 0, F_{KK} < 0, F_H > 0, F_{HH} < 0$, with constant returns to scale $\lambda Y = F(\lambda K, \lambda AH)$ and $F(0, AH) = 0$;

- A theory on the accumulation of physical capital:

 $dK/dt \equiv \dot{K} = sY - \delta K$ (s is the exogenous saving/investment rate);

- A theory on the technological change: $\dot{A} = g_A A$ (g_A is exogenous);

- A theory on the accumulation of human capital: hL, where h is the average level of human capital (constant) and L the total number of workers in the the economy; and

- A theory of the growth of workers/population: $\dot{L} = nL$ (n is exogenous).
At the end of the day we have:

\[
\dot{k} = sf(k, h) - (\delta + g_A + n) k,
\]

where

\[
k \equiv \frac{K}{AL}, \quad f \equiv F\left(\frac{K}{AL}, h\right)\quad \text{and} \quad f_k > 0, f_{kk} < 0
\]

You can find that \(k\) is converging to an equilibrium level given by \(k^{EQ}\) positively depending on \(s\) and \(h\) and negatively on \(\delta, g_A\) and \(n\).

\[\text{Figura: Equilibrium in Solow model}\]
If you assume that $F(K, AH) = K^\alpha (AH)^{1-\alpha}$ then:

$$\dot{k} = sk^\alpha h^{1-\alpha} - (\delta + g_A + n) k; \quad (3)$$

$$k^{EQ} = h \left(\frac{s}{\delta + g_A + n} \right)^{1/(1-\alpha)}; \quad (4)$$

and

$$y^{EQ} \equiv \frac{Y}{AL} = h \left(\frac{s}{\delta + g_A + n} \right)^{\alpha/(1-\alpha)} \quad (5)$$

We get a simply theory of the growth of GDP per worker (head) and on the level of income in the long run.

- If y^{EQ} is constant in equilibrium then Y/L is growing at the constant rate of technological progress g_A

- The level of income positively depends on s and h and negatively by δ and n.
We have the additional properties that the growth rate of Y/L, $g_{Y/L}$ is decreasing in the level of y, i.e. more distant you are from the equilibrium higher is your growth rate. Consider:

$$g_k \equiv \frac{\dot{k}}{k} = sk^{(\alpha - 1)}h^{1-\alpha} - (\delta + g_A + n); \quad (6)$$

and

$$\frac{\dot{Y}/L}{Y/L} = \alpha g_k + g_A; \quad (7)$$

(remember that $Y/L = Ak^\alpha h^{1-\alpha}$).

![Figura: Relationship between the level of growth and the level of income](attachment:relationship.png)
We can use Eq. (7) to understand the dynamics of distribution of GDP per worker across European regions. Two types of convergence:

- **Absolute convergence.** Key hypothesis: all regions have the same characteristics \Rightarrow convergence at the same level of GDP per worker in the long run and negative relationship between initial level of GDP per worker and growth rate of GDP per worker

- **Conditional convergence.** Key hypothesis: regions have heterogeneous characteristics \Rightarrow convergence at the same level of GDP per worker in the long run and negative relationship between initial level of GDP per worker and growth rate of GDP per worker but CONDITIONED on the differences in the regional characteristics
Figura: Absolute convergence in the GDP per worker of 256 European regions. Parametric and nonparametric regression
Hypothesis of absolute convergence with linear model: $\beta < 0$

\[
g_{Y/L} = \text{intercept} + \beta \log (Y/L_{i,1991}) + \epsilon_i \tag{8}
\]

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t-Stat.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.0148</td>
<td>0.0007</td>
<td>22.01</td>
<td>0.0000</td>
</tr>
<tr>
<td>β</td>
<td>-0.0141</td>
<td>0.0009</td>
<td>-16.17</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Res.se=0.01044 (255) DF
R-squared=0.5063, Adj.R-squared=0.5044
F-stat.=261.5 (1,255) DF, p-value$< 2e^{-16}$
Econometric model of convergence (cont.d)

Hypothesis of absolute convergence with a nonparametric model: \(\phi' < 0 \)

\[
\bar{g}_{Y/L} = \text{intercept} + \phi(\log (Y/L_{i,1991})) + \epsilon_i
\]

(9)

<table>
<thead>
<tr>
<th>Parametric coeff.:</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t-Stat</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.0175179</td>
<td>0.0006103</td>
<td>28.7</td>
<td>< 2e(^{-16}) ***</td>
</tr>
<tr>
<td>Smooth terms:</td>
<td>edf</td>
<td>Ref.df</td>
<td>F</td>
<td>p-value</td>
</tr>
<tr>
<td>(\phi(.))</td>
<td>8.722</td>
<td>8.978</td>
<td>37.97</td>
<td>< 2e(^{-16}) ***</td>
</tr>
</tbody>
</table>

GCV=9.948e\(^{-05}\); Scale est.=9.5717e\(^{-05}\); n=257
Conditional convergence

Hypothesis of conditional convergence with linear model: $\beta_0 < 0$

$$\bar{g}_{Y/L} = \text{intercept} + \beta_0 \log \left(\frac{Y}{L_i,1991} \right) + \beta_1 \bar{s} + \beta_2 \bar{n} + \beta_3 \bar{h} + \epsilon_i$$ \hspace{1cm} (10)

<table>
<thead>
<tr>
<th></th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t-Stat.</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>-0.0929</td>
<td>0.0123</td>
<td>-7.53</td>
<td>0.0000</td>
</tr>
<tr>
<td>β_0</td>
<td>-0.0154</td>
<td>0.0011</td>
<td>-14.57</td>
<td>0.0000</td>
</tr>
<tr>
<td>β_1</td>
<td>0.0027</td>
<td>0.0029</td>
<td>0.93</td>
<td>0.3532</td>
</tr>
<tr>
<td>β_2</td>
<td>-0.0146</td>
<td>0.0034</td>
<td>-4.31</td>
<td>0.0000</td>
</tr>
<tr>
<td>β_3</td>
<td>0.0204</td>
<td>0.0024</td>
<td>8.57</td>
<td>0.0000</td>
</tr>
</tbody>
</table>

Res.se=0.008956 (255) DF
R-squared=0.6411, Adj.R-squared=0.6354
F-stat.=112.6 (1,255) DF, p-value=$<2e^{-16}$
Conditional convergence

Hypothesis of conditional convergence with a nonparametric model:

$\phi'_0 < 0$

$$\bar{g}_{Y/L} = \text{intercept} + \phi_0 (\log (Y/L_{i,1991})) + \phi_1 (\bar{s}) + \phi_2 (\bar{n}) + \phi_3 (\bar{h}) + \epsilon_i$$ (11)

<table>
<thead>
<tr>
<th>Parametric coeff.:</th>
<th>Estimate</th>
<th>Std. Error</th>
<th>t-Stat</th>
<th>P-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Intercept)</td>
<td>0.0175179</td>
<td>0.0004611</td>
<td>37.99</td>
<td>< 2e(^{-16}) ***</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Smooth terms:</th>
<th>edf</th>
<th>Ref.df</th>
<th>F</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\phi_0(.)$</td>
<td>8.641</td>
<td>8.963</td>
<td>39.175</td>
<td>< 2e(^{-16}) ***</td>
</tr>
<tr>
<td>$\phi_1(.)$</td>
<td>5.392</td>
<td>6.582</td>
<td>1.722</td>
<td>0.109</td>
</tr>
<tr>
<td>$\phi_2(.)$</td>
<td>8.595</td>
<td>8.95</td>
<td>5.644</td>
<td>< 2e(^{-16}) ***</td>
</tr>
<tr>
<td>$\phi_3(.)$</td>
<td>1.235</td>
<td>1.434</td>
<td>80</td>
<td>< 2e(^{-16}) ***</td>
</tr>
</tbody>
</table>

R-sq.(adj)=0.752; Dev.expl.=77.5%
GCV=6.0497e\(^{-05}\); Scale est.=5.4645e\(^{-05}\); n=257
Figura: Absolute convergence in the GDP per worker of 256 European regions. Parametric and nonparametric regression.
Figura: Estimated distributions of (relative) GDP per worker from 1991 to 2008 in 254 NUTS-2 European regions.