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Motivation and outline of the presentation

motivation & outline

Motivation

> it is quite common in convergence analyses across spatial units
(countries, regions) that data exhibit strong spatial dependence

» neglecting spatial dependence may affect the results

= develop a tool for the analysis of cross-sectional convergence within
the distribution dynamics approach when data are spatially
dependent

Outline
> recall some spatial dependence issues

» discuss consequences of spatial dependence on the analysis of
distribution dynamics

» develop a two-step spatial nonparametric estimator for adjusting
existing tools in distribution dynamics analysis

> analyze convergence among US states




Modeling spatial dependence

Time series analysis — Y; = B1 4+ B2 Xor + 1, t =1,..., T The W matrix

Spatial analysis — Y; = 81 + 5 Xoi + uj, i = 1,..., N, where some
spatial interaction effects can be included.

» Endogenous interaction effects (spatial lag of Y)
» Exogenous interaction effects (spatial lag of X)

> Interaction effects among error terms (spatial dependence in u)

It is possible to think of general nesting spatial models

Y=pWY +XB+WXy4+u, uv=IWu+e

» SAR:v=0,=0,= Y =pWY + X5+ u
> SLX:p=0,=0,=Y =X+ WXy+u
» SEM: v=0,p=0, = Y = XB+ u, where u = A\Wu + ¢




The structure of spatial interactions

It is necessary to impose a structure on the extent of spatial interaction.

One possible approach - following a neighborhood view - is to define a
neighborhood set N(i) for each location i.

By doing this, it is possible to specify for the neighbor set a

> a contiguity form
> or a distance decay based form

> distance band
> k-nearest neighbors
> more complex distance decay functions (e.g. inverse of distance)

The outcome is a spatial weights matrix.

The w matrix




The spatial weight matrix

The spatial weight matrix W is N x N positive matrix with elements wj; The w matrix
and it represents, for each location i in the system, which of the other
locations in the system affect i.

In its simplest version, the W is in binary contiguity form, where w; =
1 for i and j neighbors (e.g. dj < critical distance), w;; = 0 otherwise
w;i = 0 by convention.

More in general, weights can be defined according to:
» Contiguity
> common boundary (regularly or irregularly located units)
» Distance

> distance band
> k-nearest neighbors

» Other (even more general)

> social distance
> complex distance decay functions




The W matrix as spatial shift operator

In contrast to the unambiguous concept of time shift along the time
axis, there is no such a corresponding concept in space, especially
when observations are irregularly located.

So in space we adopt the spatial weight matrix, the acts in the sense of
calculating the weighted average of random variables at neighboring
locations.

This is given by reading by row i the W matrix that gives the number
of nonzero weighted j locations that gives

N
[Wyli = w;Y;
j=1

For easy of interpretation often the elements are row standardized, so
for each i Zszl wj=1. Hence it is more visible the interpretation of the
spatial lag as weighted average of the neighbors, or spatial smoother.

The w matrix




Spatial autocorrelation specification

Together with the parameters in the models, the W matrix plays a role
in the specification of the spatial autocorrelation.

There is also another approach to the specification of spatial
autocorrelation, which is the so-called direct representation of the
spatial autocorrelation.

The objective of this second approach is to express the element of the
covariance matrix in a parsimonious fashion, as a direct function of the
distance between locations i and j.

COV(U,‘, uj) = O2f(dU7 ¢)

dj is the distance between sites i,j
f(.) is a decaying function such that % <0,
u

¢ is an appropriate vector of parameters.

The w matrix




Distribution dynamics

The distribution dynamics approach in short
> let F(Y:) and F(Y:ys) represent the cross-sectional distributions of
per capita income at time t and t + s
> assume they admit a density (f(Y:) and f(Yi4s) respectively)
> assuming the dynamics between time t and t + s can be modelled
as a first order process, then

F(Yad) = [ F ¥ £ (¥ %,

overview

> convergence is analysed through:
e an estimate of the conditional density (or stochastic kernel)
f (Yi+s|Ye), traditionally obtained via the kernel estimator
e an estimate of the ergodic (or stationary) distribution (as s — c0),
under the assumption that the process is Markov and time
homogeneous




Conditional density estimation: kernel estimator

> the corner-stone of the approach is the conditional density
f(Yees|Y2)

> giVen a Sample (\/171:7 Yl,t+s), . (\/j,t’ \/j,t+$)y . (Yn7t7 Yn,t+s)y
the most common estimator of a conditional density is the kernel
estimator:

conditional density

n

F(Yeral Vo) = S wi(Y) Ko (Yers — Yioers)

j=t

where
w(y = e = Yi0)
t) — n
! Zj:l Ks (Yt - ijt)

a, b are bandwidths controlling the degree of smoothness




Conditional density estimation: mean-bias issue

The mean of the conditional density f (Yiis|Y:) is the mean function,
M(Y?)

Hyndman et al. (1996)

> the mean function estimator implicit in the traditional kernel
estimator of the conditional density is the local constant estimator

» the bias of the mean function estimate is carried over onto the
conditional density estimate (mean-bias)

» the local constant estimator has poor bias properties

= the local constant estimator can be replaced with other smoothers
employed in nonparametric regressions Yiis = M(Y:) + €
(mean-bias adjustment)

Since we are analyzing economic convergence dynamics

= the mean function estimate required in the adjustment procedure is
in fact an autoregression

conditional density




The spatial dependence issue

Note that

> the statistical properties of M(Y;) assume errors are zero mean and
uncorrelated

> however, in growth and convergence studies data exhibit spatial spatial dependence
dependence

= consequences of neglecting spatial dependence in the estimate of
M(Y:) are also carried over onto the conditional density estimate

Within the distribution dynamics framework

> the issue is (only rarely) tackled via spatial filtering:
> assume that the structure of spatial dependence in known (i.e.,
assume that the spatial weights matrix W is known)

> filter spatial dependence away from data and then proceed with the
analysis

» we follow a different route: we prefer not to make assumptions on
the structure of spatial dependence




Spatial NonParametric (SNP) regression

SNP is a two-step procedure for nonparametric regression with spatially
dependent data whose specific features are:
> it does not require a priori parametric assumptions on spatial vervicw
dependence
» the information on the dependence structure is drawn from a
nonparametric estimate of the spatial covariance matrix, called
spline correlogram.

In addition:
> can be employed to estimate the mean function required in
Hyndman's mean-bias adjustment, thus providing a way of dealing
with both the mean-bias and the spatial dependence issues




Spline correlogram (Bjgrnstad and Falk, 2001)

Along the lines of the direct representation approach, the spline
correlogram is a continuous nonparametric positive semidefinite
estimator of the covariance function:

> start from the sample correlation

Spatial covariance

5 _ (z2—2)(z—2)

P2 - 27
> take a cubic B-spline K as a smoother
) = Doy 20 Kaldi/ h)pi
! 21 2o Ka(di/ )

> since g must be not only consistent, but also positive semidefinite,
use the Fourier-filter




SNP procedure
Objective: estimate Y = M(X) + u

Tool: SNP procedure

0. Pilot fit: estimate M(X) with a local polynomial smoother to
obtain 4 =Y — M(X)

1. Nonparametric covariance matrix estimation: use the spline
correlogram to obtain V/, the estimated spatial covariance matrix
of & (using, simply, a distance matrix)

2. Final fit: run the modified regression Z = M(X) + € where

o Z = M(X)+ L™t replaces Y

e [ is obtained through the Cholevsky decomposition of 1%
= residuals ¢ are free from spatial dependence

Properties
» asymptotic properties are derived by adapting Martins-Filho and
Yao's (2009) theoretical framework
» finite sample properties are established through a Monte Carlo
experiment

procedure




Monte Carlo experiment

For the model
Y =M(X)+u
u=pWu+e

we consider a set of nonlinear functions:

A M(X) = sin(57X)
B M(X)=2+sin(7.1(X — 3.2))
C  M(X)=1-—48X +218X> — 315X> + 145x" S
D M(X) = 10exp(—10X)
E  M(X)=(—1+2X) + 0.95exp(—40(—1 + 2X)?)
F M(X) =1/(1 + exp(—6 + 12X))
G M(x) = (0.3v271) texp(—2(X — 0.5)%)
where:
X ~ U(0,1)
€~ N(O,U2), where o is set to obtain pseudo-R2 = 0.2, 0.5, 0.8
A=0.3,05,0.8

two W matrices (10% neighbors and contiguity from Voronoi tessellation)
sample size (N) = 50, 100, 200
1000 Monte Carlo replications
two types of bandwidth (direct plug-in and cross-validation minimization)




Monte Carlo functions

simulations




Monte Carlo results

Ratio (SNP over NP) of the median across replications of the MISE
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Conclusions on MC experiments

Results show

» SNP outperforms polynomial regression (NP)
> this is confirmed:

e for various functional forms
for all considered p values

for all considered sample sizes
for all considered pseudo-R? values

conclusions

Hence
» SNP is a valuable tool for nonparametric regression when data are
spatially dependent

» SNP can be used to estimate the mean function within Hyndman's
mean-bias adjustment thus improving the properties of the
conditional density estimator




Data

USA context
» 48 coterminous US states
» quarterly data on personal per capita income (1971:Q1-2010:Q4)

» orthodromic distance between state capitals

Allow for short-run, cyclical dynamics

> the object of interest to convergence analysts is, essentially, the
evolution of potential output

> measured output is a noisy indicator of potential output,
contaminated by business cycle dynamics
= as in Gerolimetto and Magrini (2014):

e extract the trend from each state's series via a Hodrick-Prescott
filter

e apply the distribution dynamics approach to data on extracted
trends




1971:Q1-1980:Q4
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Table: Results

observed initial
observed final
filtered initial
filtered final
residuals NP
residuals SNP

HP-filtered initial
HP-filtered final
ergodic NP
ergodic SNP

Moran’s |
0.2606
0.1516
0.2607
0.1697
0.0937
0.0155

cv
0.1563
0.1422
0.1420
0.1463

p-value
0
0.0013
0
0.0004
0.028
0.4815

IR
0.1905
0.2077
0.2036
0.2120

Table: Estimated half-life values

ergodic via SNP
3.5484

ergodic via
3.2585

NP

1971:Q1-1980:Q4




1981:Q1-1990:Q4
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Table: Results

observed initial
observed final
HP-filtered initial
HP-filtered final
residuals NP
residuals SNP

HP-filtered initial
HP-filtered final
ergodic NP
ergodic SNP

Moran'’s
0.1548
0.3014

0.17
0.3076
0.5215

-0.0817

cv
0.1427
0.1681

0.1541

i

p-value
0.0011
0
0.0004
0
0
0.2569

IR
0.1905
0.2424

0.2136

Table: Estimated half-life values

ergodic via SNP
1.7255

ergodic via NP

1981:Q1-1990:Q4




1991:Q1-2000:Q4
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Table: Results

observed initial
observed final
HP-filtered initial
HP-filtered final
residuals NP
residuals SNP

HP-filtered initial
HP-filtered final
ergodic NP
ergodic SNP

Moran’s |
0.3141
0.2425
0.306
0.2412
0.2007
0.0410

cv
0.1677
0.1673
0.1902
0.2000

p-value
0
0
0
0
0
0.2412

IR
0.2441
0.2458
0.3158
0.3524

Table: Estimated half-life values

ergodic via SNP
8.4571

ergodic via
7.0202

NP

1991:Q1-2000:Q4




2001:Q1-2010:Q4
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stochastic kernel 3D plot stochastic kernel 3D plot
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Table: Results

observed initial
observed final
HP-filtered initial
HP-filtered final
residuals NP
residuals SNP

HP-filtered initial
HP-filtered final
ergodic NP
ergodic SNP

Moran’s |
0.251
0.285
0.2421
0.2865
0.1416
0.0042

cv
0.1675
0.1803
0.2021
0.1989

p-value

0

0

0

0
0.0019
0.6264

IR
0.2440
0.2538
0.3569
0.3420

Table: Estimated half-life values

ergodic via SNP
4.5453

ergodic via
4.9808

NP

2001:Q1-2010:Q4




Transitional dynamics — examples
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Figure: plots of the conditional density distributions for a State’s initial level of
(HP-filtered) per capita income after a number of iterations corresponding to
the half-life and the corresponding cross-sectional distribution




Transitional dynamics

1971:Q1-1980:Q4 1981:Q1-1990:Q4 1991:Q1-2000:Q4 2001:Q1-2010:Q4
3Q<1 1Q>1 3Q<1 1Q>1 3Q<1 1Q>1 3Q<1 1Q>1
Alabama 0.8512 0.8590
Arkansas 0.8404 0.8459
California 1.1239
Colorado 1.2093
Connecticut 1.1482 1.3531 1.3786
Delaware 1.1266
lllinois 1.1185
Kentucky 0.8728 0.8656
Louisiana 0.8647
Maine 0.8754
Maryland 1.1185 1.3367 1.2702
Massachusetts 1.3301 1.3244
Mississippi 0.8296 0.7999
Nevada 1.1428
New Jersey 1.1320 1.3465 1.3447
New Mexico 1.1239
New York 1.1239 1.3202 o .
South Carolina ~ 0.8701 0.8623 Uiersiiene] et
Tennessee 0.8853
West Virginia 0.8539 0.8492

Table: mode of those conditional distributions (and hence those States) for
which either the 3" quartile is smaller than 1 or the 15t quartile is larger than 1




Conclusions

Overall, we find
» evidence of persistence in the 1970s and 1980s
» evidence of club convergence in the 1991:Q1-2000:Q4 period
» evidence of divergence in the 2001:Q1-2010:Q4 period

Specifically, results show that
> neglecting spatial dependence might affect the results
> this is particularly evident in the 1981:Q1-1990:Q4 period

Conclusions
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