
Vicente Rios

Spatial and Regional Economic Analysis

Mini-Course: 

Author: Vicente Rios



Vicente Rios

Spatial Econometric Models

Estimation

Inference and Spillovers

Spatial Bayesian Model Selection

Lecture 2

2



Vicente Rios

Spatial econometric models deal with interaction effects among 

geographical units.

Examples are economic growth rates of OECD countries over T years, monthly 

unemployment rates of EU regions in the last decade, and annual tax rate 

changes of all jurisdictions in a country since the last election.

Spatial interaction effect models

In modeling terms, three different types of interaction effects can be distinguished: 

(i) Endogenous interaction effects among the dependent variable (WY)

(ii) Exogenous interaction effects among the independent variables (WX)

(iii) Interaction effects among the error terms (Wu).

Spatial Econometric Models
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Endogenous interaction effects

Refer to the case where the decision of a particular unit A (or its economic decision 

makers) to behave in some way depends on the decision taken by other units, 

among which, say, unit B:

Dependent variable y of unit A ↔Dependent variable y of unit B 

Endogenous interaction effects are typically considered as the formal specification 

for the equilibrium outcome of a spatial or social interaction process, in which the 

value of the dependent variable for one agent is jointly determined with that of the 

neighboring agents. 

Literature on strategic interaction among local governments, for example, 

endogenous interaction effects are theoretically consistent with the situation where 

taxation and expenditures on public services interact with taxation and 

expenditures on public services in nearby jurisdictions (Brueckner 2003). 

Spatial Econometric Models
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Exogenous interaction effects

Exogenous interaction effects, where the decision of a particular unit to behave 

in some way depends on independent explanatory variables of the decision 

taken by other units 

Independent variable x of unit B →Dependent variable y of unit A

Capital can flow across borders; hence the amount an individual economy 

saves does not have to be the same as the amount it invests. Per capita income 

in one economy also depends on the savings rates of neighboring economies. 

Not only the savings rate but also other explanatory variables may affect per 

capita income in neighboring economies. 

In both the theoretical and the empirical literature on economic growth and 

convergence among countries or regions is not only taken to depend on the 

initial income level and the rates of saving, population growth, technological 

change and depreciation in the own economy, but also those of neighboring 

economies (Ertur and Koch 2007; Elhorst et al. 2010)  

Spatial Econometric Models
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Interaction effects among the error terms 

Error term u of unit A ↔Error term u of unit B 

Interaction effects among the error terms do not require a theoretical 

model for a spatial or social interaction process, but, instead, is 

consistent with a situation where determinants of the dependent 

variable omitted from the model are spatially autocorrelated, and 

with a situation where unobserved shock follow a spatial pattern. 

Spatial Econometric Models
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Originally, the central focus of spatial econometrics has been on one type of 

interaction effect in a single equation cross-section setting. 

Usually, the point estimate of the coefficient of this interaction effect was used to 

test the hypothesis as to whether spatial spillover effects exist. 

Most of the work was inspired by research questions arising in regional science 

and economic geography, where the units of observations are geographically 

determined and the structure of the dependence among these units can somehow be 

related to location and distance. 

However, more recently, the focus has shifted to models with more than one type 

of interaction effects, to panel data, and to the marginal effects of the 

explanatory variables in the model rather than the point estimates of the interaction 

effects

Spatial Econometric Models
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Consider

𝑦𝑖 = 𝛼 + 𝜌

𝑗=1

𝑛

𝑤𝑖𝑗 𝑦𝑗 + 𝑿𝛽 + 𝜀𝑖

where:

𝑤𝑖𝑗 is the th element of W

σ𝑗=1
𝑛 𝑤𝑖𝑗 𝑦𝑗 is the weighted average of the dependent variable

𝜀𝑖 is the error term such that E 𝜀𝑖 = 0

𝜌 is the spatial autoregressive parameter which measures the intensity of the 

spatial interdependence

𝜌 > 0 positive spatial interdependence

𝜌 < 0 negative spatial interdependence

𝜌 = 0 traditional OLS model

This model is known as Spatial Lag Model (SLM) or the Spatial

Autoregressive Model (SAR)

Spatial Lag Model
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In this model, a change in a regressor k in spatial unit i Δ𝑋𝑖𝑘 is directly 

transmitted to the dependent variable of spatial unit i producing a change 

Δ𝑦𝑖
However, the effect on i is also transmitted to j: Δ𝑦𝑖 → Δ𝑦𝑗

and the effect in j is transmitted back to i: Δ𝑦𝑗 → Δ𝑦𝑖

and back to j…. 

Spatial Lag Model
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The SLM specification with covariates in matrix form can be written as:

𝒚 = 𝛼𝜾𝒏 + 𝜌𝑾𝒚+ 𝑿𝛽 + 𝜀

where 𝒚 is a n x 1 vector of observations of the dependent variable, 𝑿 is an n x K 

matrix of observations on the explanatory variables, 𝛽 is a k x 1 vector of parameters 

and 𝜾𝒏 is an n x 1 vector of ones.

It is also important to find the reduced form of the process. 

The reduced form of a system of equations is the result of solving the system for 

the endogenous variables. 

This gives the endogenous variables as functions of exogenous variables. 

For example, the general expression of a structural form is f(𝒚, 𝑿, 𝜀) = 0 whereas 

the reduced form is given by 𝒚 = g(X, 𝜀), with g as function.

Spatial Lag Model
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Reduced form of the SLM

𝒚 = 𝜌𝑾𝒚 + 𝑿𝛽 + 𝜀

𝒚 = 𝐼 − 𝜌𝑾 −1𝑿𝛽 + 𝐼 − 𝜌𝑾 −1𝜀

We need 𝐼 − 𝜌𝑾 −1 to be invertible. From standard algebra theory any matrix 

A is invertible if det(A) is non zero.

If 𝑾 is not row-normalized 𝐼 − 𝜌𝑾 −1is invertible if:

𝜔𝑚𝑖𝑛
−1 < 𝜌 < 𝜔𝑚𝑎𝑥

−1

𝜔𝑚𝑖𝑛, 𝜔𝑚𝑎𝑥 are the minimum and maximum eigenvalues of 𝑾

If W is row-normalized, then 𝐼 − 𝜌𝑾 −1 is invertible if:

𝜌 < 1

Therefore, the spatial structure embodied in W is closely connected to 𝜌. 

Spatial stationariy is garanteed if 𝜔𝑚𝑖𝑛
−1 < 𝜌 < 1 (different from time-series) 

Spatial Lag Model
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The expectation is given by:

𝑬(𝒚|𝑿,𝑾) = 𝐸 𝐼 − 𝜌𝑾 −1 𝛼𝜾𝒏 + 𝑿𝛽 + 𝐼 − 𝜌𝑾 −1𝜀|𝑋,𝑊

To understand this expresion, we need to know the Leontief expansion:

If 𝜌 < 1, then 𝐼 − 𝜌𝑾 −1 = σ𝑖=0
∞ 𝜌𝑾

𝑖

Then, we can rewrite the model as.

𝒚 = 𝐼 + 𝜌𝑾+ 𝜌𝟐𝑾𝟐+. . 𝛼𝜾𝒏 + 𝑿𝛽 + 𝐼 + 𝜌𝑾+ 𝜌𝟐𝑾𝟐+. . 𝜀

= 𝛼𝜾𝒏 + 𝜌𝑾𝜾𝒏𝛼 + 𝜌𝟐𝑾𝟐𝜾𝒏𝛼 +. . +𝑿𝛽 + 𝜌𝑾𝑿𝛽 + 𝜌𝟐𝑾𝟐𝑿𝛽+. .

+ 𝜀 + 𝜌𝑾𝜀 + 𝜌𝟐𝑾𝟐𝜀

This expresion can be simplified since the infinite series:

𝛼𝜾𝒏 + 𝜌𝑾𝜾𝒏𝛼 + 𝜌𝟐𝑾𝟐𝜾𝒏𝛼 →
𝛼𝜾𝒏

(1 − 𝜌)

𝒚 =
𝛼𝜾𝒏

(1 − 𝜌)
+ 𝑿𝛽 + 𝜌𝑾𝑿𝛽 + 𝜌𝟐𝑾𝟐𝑿𝛽+. .+ 𝜀 + 𝜌𝑾𝜀 + 𝜌𝟐𝑾𝟐𝜀+. .

Spatial Lag Model
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The DGP is: 

𝑦 = 𝛼𝜄𝑛 + 𝜌𝑊𝑦 + 𝑋𝛽 +𝑊𝑋𝜃 + 𝜀

𝑦 = 𝐼 − 𝜌𝑊 −1 𝑋𝛽 +𝑊𝑋𝜃 + 𝐼 − 𝜌𝑊 −1𝜀

The SDM results in a spatial aturoregressive model of a special form, 

including not only the spatially lagged dependent variable and the

explanatory variables, but also the spatially lagged explanatory variables, 

WX.

𝒚 depends on own-regional factors from matrix (X), plus the same factors

averaged over the n neighboring regions (WX)

This model can be defined written as a SAR model by defining:

𝑍 = 𝜄𝑛 𝑋 𝑊𝑋 and 𝛿 = [𝛼 𝛽 𝜃]

𝑦 = 𝜌𝑊𝑦 + 𝑍𝛿 + 𝜖

Spatial Durbin Model
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In the SDM, a change in a regressor k in spatial unit j Δ𝑋𝑗𝑘 is directly 

transmitted to both the dependent variable of spatial unit i producing 

a change Δ𝑦𝑖 and to the dependent variable of j Δ𝑦𝑗

However, the effect on i is also transmitted to j: Δ𝑦𝑖 → Δ𝑦𝑗

and the effect in j is transmitted back to i: Δ𝑦𝑗 → Δ𝑦𝑖

and back to j…. 

Spatial Durbin Model
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We can also use spatial lags to reflect dependence in the disturbance

process, which lead to the SEM:

𝑦 = 𝑋𝛽 + 𝑢

𝑢 = 𝜆𝑊𝑢 + 𝜀

The reduced form is given by:

𝑦 = 𝑋𝛽 + 𝐼 − 𝜆𝑊 −1𝜀

where 𝜆 is the autoregressive parameter for the error lag (to distinguish

the notation from the spatial autoregressive coefficient in a spatial lag

model) and 𝜀 is a generally i.i.d noise

Spatial Error Model
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In the SEM  a random innovation in spatial unit i 𝜀𝑖 affects the residuals

of i, which are spatially correlated, thus affecting the dependent variable.

In this model, a shock 𝜀𝑖is directly transmitted to the error term 𝑢𝑖
variable of spatial unit i producing a change Δ𝑦𝑖
But also, the effect of the shock 𝜀𝑖 → 𝑢𝑗

and the effect in j is transmitted back to i: 𝑢𝑗 → 𝑢𝑖

and back to j…. 

Spatial Error Model
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The Spatial Durbin Error is given by:

𝑦 = 𝑋𝛽 +𝑊𝑋𝜃 + 𝑢

𝑢 = 𝜆𝑊𝑢 + 𝜀

The reduced form is given by:

𝑦 = 𝑋𝛽 +𝑊𝑋𝜃 + 𝐼 − 𝜆𝑊 −1𝜀

The SLX is given by:

𝑦 = 𝑋𝛽 +𝑊𝑋𝜃 + 𝑢

The SARAR (or SAC) is given by:

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝑢

𝑢 = 𝜆𝑊𝑢 + 𝜀

The General Nesting Model (GNS) is given by:

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 +𝑊𝑋𝜃 + 𝑢

𝑢 = 𝜆𝑊𝑢 + 𝜀

Other spatial models
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Taxonomy of spatial models
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Traditionally, the parameter restrictions that allow the researcher to find the

specification for the empirical analysis were analyzed by means of Likelihood

Ratio Tests / Lagrange Multiplier tests

Approaches

Specific to general approach (LM tests, Anselin 1988; RLM Anselin, 1996)

Start with the OLS, check if SAR/SEM fit better the data

If they do, then check if the SDM/SDEM fit better the data tan SAR/SEM….

General to specific approach (Florax et al., 2003)

Start with the SDM/SDEM and check if the SDM/SDEM can be simplified to SAR/SEM 

models.

If they can, then check if SAR/SEM can be simplified to OLS

Problem: Depending on your starting point you may get a different

specification. Not very reliable. 

Nowadays: Bayesian Model Selection

Taxonomy of spatial models
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Long-run equilibrium motivation

Consider the following:

𝑦𝑡 = 𝜌𝑊𝑦𝑡−1 + 𝑋𝛽 + 𝜀𝑡

𝑦𝑡: dependent variable at time t (i.e, house selling price)

𝑊𝑦𝑡−1: space-time lag (average value of neighbors past year)

𝑋𝑡: characteristics of regions remain relatively fixed over time

𝑋𝑡 = 𝑋

Note that we can replace 𝑦𝑡−1 = 𝜌𝑊𝑦𝑡−2 + 𝑋𝛽 + 𝜀𝑡−1 producing:

𝑦𝑡 = 𝜌𝑊 𝜌𝑊𝑦𝑡−2 + 𝑋𝛽 + 𝜀𝑡−1 + 𝑋𝛽 + 𝜀𝑡

𝑦𝑡 = 𝑋𝛽 + 𝜌𝑊𝑋𝛽 + 𝜌2𝑊2𝑦𝑡−2 + 𝜀𝑡 + 𝜌𝑊𝜀𝑡−1

Motivating Spatial Models
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Recursive substitution for past values of the vector 𝒚𝑡−𝑟 on the right hand side of

previous expresion over q periods leads to:

𝑦𝑡 = 𝜌𝑊 𝜌𝑊𝑦𝑡−2 + 𝑋𝛽 + 𝜀𝑡−1 + 𝑋𝛽 + 𝜀𝑡

𝑦𝑡 = 𝐼 + 𝜌𝑊 + 𝜌2𝑊2+. . +𝜌𝑞−1𝑊𝑞−1 𝑋𝛽 + 𝜌𝑞𝑊𝑞𝑦𝑡−𝑞 + 𝑢𝑡
𝑢𝑡 = 𝜀𝑡 + 𝜌𝑊𝜀𝑡−1 + 𝜌2𝑊2𝜀𝑡−2+. . +𝜌

𝑞−1𝑊𝑞−1𝜀𝑡−(𝑞−1)

Noting that:

E(𝑦𝑡) = 𝐼 + 𝜌𝑊 + 𝜌2𝑊2+. . +𝜌𝑞−1𝑊𝑞−1 𝑋𝛽 + 𝜌𝑞𝑊𝑞𝑦𝑡−𝑞

where we used the fact that E(𝜀𝑡−𝑟) = 0, r=0,…,q-1 which also implies that 𝐸(𝑢𝑡) =
0

Taking the limit:

lim
𝑞→∞

E(𝑦𝑡) = 𝐼 − 𝜌𝑊 −1𝑋𝛽

Note that we use the fact that the magnitude of 𝜌𝑞𝑊𝑞𝑦𝑡−𝑞 tends to zero for large q, 

under the assumption that |𝜌|<1 and being W row-normalized

Point: A SLM/SAR can emerge as a consequence of a dynamic process where past

neighboring decisions are taken into account

Motivating Spatial Models
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Omitted variable motivation

Consider the process

𝑦 = 𝑋𝛽 + z𝛿

where x and z are uncorrelated random vectors of dimension n x 1, and the vector z

follows the following spatial autoregressive process:

𝑧 = 𝜆𝑊𝑧 + 𝑟

𝑧 = 𝐼 − 𝜆𝑊 −1𝑟

where 𝑟~𝑁 0, 𝜎2𝐼 . Examples of z are culture, social capital, neighborhood prestige. 

If z is not observed directly, then:

𝑦 = 𝑋𝛽 + u
𝑢 = 𝐼 − 𝜆𝑊 −1𝜀

where 𝜀 = 𝛿𝑟 → 𝒚 = 𝑿𝜷 + 𝑰 − 𝝀𝑾 −𝟏𝜹𝒓 ↔ 𝒚 = 𝑿𝜷+ 𝑰 − 𝝀𝑾 −𝟏𝜺

Then we have the DGP for the spatial error model.

This makes the SEM a very useful specification when you have omitted variables 

z uncorrelated with X that exhibit a spatially correlated pattern (we do not always

have a measurement for everything) 

Motivating Spatial Models
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Now suppose that X and 𝑧 are correlated and given by the following process:

𝑦 = 𝑋𝛽 + 𝑧
𝑧 = 𝜆𝑊𝑧 + 𝑢
𝑢 = 𝑋𝛾 + 𝑣
𝑣 ~𝑁 0, 𝜎2𝐼

where the scalar parameters γ and 𝜎2 govern the strength of the relationship between X 

and z = 𝐼 − 𝜆𝑊 −1𝑢. Inserting 𝑢 = 𝑋𝛾 + 𝑣 into the SEM we obtain:

𝑦𝑡 = 𝑋𝛽 + 𝐼 − 𝜆𝑊 −1𝑢

= 𝑋𝛽 + 𝐼 − 𝜆𝑊 −1 𝑋𝛾 + 𝑣

= 𝑋𝛽 + 𝐼 − 𝜆𝑊 −1𝑋𝛾 + 𝐼 − 𝜆𝑊 −1𝑣

𝑦 𝐼 − 𝜌𝑊 = 𝐼 − 𝜌𝑊 𝑋𝛽 + 𝑋𝛾 + 𝑣

𝒚 = 𝝆𝑾𝒚+ 𝑿(𝜷 + 𝜸) +𝑾𝑿 −𝝆𝜷 + 𝒗

This is the SDM, which included a spatial lag of the dependent variable 𝒚, as well as 

the explanatory variables 𝑿. 

SDM: useful when we have omitted variables z that follow a spatial patern and 

that are correlated with the regressors

SDM and Omitted Variables Motivation
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In a time series context, the OLS estimator remains consistent even when a lagged

dependent variable is present, as long as the error term does not show serial 

correlation

While the OLS estimator may be biased in small simples it can still be used for

asymptotic inference.

In spatial context, this rule does not hold, irrespective of the properties of the error 

term.

Consider the most basic SAR model (with covariates omitted):

𝑦 = 𝜌𝑊𝑦 + 𝜀

The OLS estimator of 𝜌 would be:

ො𝜌 = 𝑊𝑦 ′ 𝑊𝑦
−1

𝑊𝑦 ′𝑦 → 𝑋′𝑋 −1𝑋′𝑦

ො𝜌 = 𝑊𝑦 ′ 𝑊𝑦
−1

𝑊𝑦 ′ 𝜌𝑊𝑦 + 𝜀

ො𝜌 = 𝑊𝑦 ′ 𝑊𝑦
−1

𝑊𝑦 ′𝜌𝑊𝑦 + 𝑊𝑦 ′ 𝑊𝑦
−1

𝑊𝑦 ′𝜀

ො𝜌 = 𝜌 + 𝑊𝑦 ′ 𝑊𝑦
−1

𝑊𝑦 ′𝜀

The second term does not equal to zero and the estimator will be biased

Estimation: OLS bias
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If we open the term Wy ′ε in the following expression

ො𝜌 = 𝜌 + 𝑊𝑦 ′ 𝑊𝑦
−1

𝑊𝑦 ′𝜀

𝑊𝑦 ′ = ε′𝑊′(𝐼 − 𝜌W)−1 ε and take its expected value for a W matrix of the form:

𝑊 =

0 1 0 0
1 0 1 0
0
0

1
0

0
1

1
0

or its row-normalized version 𝑊 =

0 1 0 0
0.5 0 0.5 0
0
0

0.5
0

0
1

0.5
0

we get

E[ε′𝑊′(𝐼 − 𝜌W)−1 ε] =
2𝜎2𝜌 3−𝜌2

𝐷
where 𝐷 = 1 − 3𝜌2 + 𝜌4

E[ε′𝑊′(𝐼 − 𝜌W)−1 ε] =
2𝜎2𝜌

5

4
−𝜌2

𝐷
where 𝐷 = 1 −

5

4
𝜌2 + (

1

4
)𝜌4

which can only be 0 if 𝜌=0 (the other solutions for 𝜌 violate the condition | 𝜌|<1

In the first case 𝜌 =+/− 3/2 while in the second one 𝜌 =+/− 5/4

Estimation: OLS bias
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𝑦 = 0.5𝑊𝑦 + 𝜀, 𝜀~𝑁 0, 1

Estimation: OLS bias
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we can see how increased spatial dependence overshoots the bias

Estimation: OLS bias
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Estimation of Spatial Models

IV/2SLS regression

Maximum Likelihood

Bayesian

(we will focus on SAR/SDM models but similar procedures apply

for SEM/SDEM models)

These estimation techniques both have advantages and 

disadvantages. 

Estimation
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IV/2SLS regression in spatial models attempts to instrument the endogenous spatial

term WY in SAR/SDM:

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜖

The problem when making inferences about the effect of a change in X on y through 

𝛽 is that the things here are not constant because:

Δ𝑋 → Δ𝑦 → 𝑊Δ𝑦 → Δ𝑦. .

We need some other variables Q (instruments) that correlate with 𝑊𝑦 and that at the 

same time are not caused by y such that we can  break  

Δ𝑋 → Δ𝑦 → 𝑊𝑦 → Δ𝑦

Because of Δ𝑄/Δ𝑦 = Δ𝑄/Δ𝜖= 0

such that when we look at 𝛽, we are effectively picking up:

Δ𝑋 → Δ𝑦

IV-2SLS Estimation
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This endogeneity issue can be addressed with two-stage methods based on the 

existence of a set of instruments Q which are correlated with the original variables 

Z=[ Wy X] but uncorrelated with the error term. 

If Q is the same column dimension as Z the IV estimate of the parameters of the model 

η = (𝜌, 𝛽) is:

η = 𝑄′𝑍 −1𝑄′𝑦

In the general case where Q is larger than Z, the problem is a minimization of  f:

min f η = 𝑦 − 𝑍η ′Q Q′Q −1𝑄′(𝑦 − 𝑍η)

with solution: 

η𝐼𝑉 = 𝑍′𝑃𝑍 −1𝑍′𝑃𝑦

where 𝑃 = 𝑄[𝑄′𝑄]−1𝑄′ is an indempotent projection matrix (i.e, PP=P)

P can be seen as a matrix of predicted values from regressions of Z on the instruments

in Q (i.e መ𝑍= f (Q)) in a first stage.

IV-2SLS Estimation
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To see this more clearly, the idea would be that of running in a first stage, the

following regression:

𝑊𝑦 = 𝑄𝜋 + 𝑣

and then used predicted values of 𝑊𝑦 instead of 𝑊𝑦 in:

𝑦 = 𝜌𝑊𝑦 + 𝑋𝛽 + 𝜖 → 𝑦 = 𝜌 𝑊𝑦 + 𝑋𝛽 + 𝜖

To obtain an unbiased/consistent estimator of 𝜌 and 𝛽

The full thing/complication on IV/2SLS regressions is therefore “what to pick” 

as Q.

Main proposals so far:

Kelejian and Prucha: 𝑄 = [𝑋,𝑊𝑋,𝑊2𝑋]

IV-2SLS Estimation
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𝑦 = 𝜌𝑊𝑦 + 𝛼𝜄𝑛 + 𝑋𝛽 +𝑊𝑋𝜃 + 𝜖

𝑦 = 𝐼𝑛 − 𝜌𝑊 −1 𝛼𝜄𝑛 + 𝑋𝛽 +𝑊𝑋𝜃 + 𝜖

𝜖~𝑁(0, 𝜎2𝐼𝑛)

This model can be defined written as a SAR model by defining:

𝑍 = 𝜄𝑛 𝑋 𝑊𝑋 𝑎𝑛𝑑 𝛿 = [𝛼 𝛽 𝜃] which leads to:

𝑦 = 𝜌𝑊𝑦 + 𝑍𝛿 + 𝜖 or 𝑦 = 𝐼𝑛 − 𝜌𝑊 −1 𝑍𝛿 + 𝜖

If the true value of the parameter 𝝆 was known, let’s call it 𝝆∗, we could re-arrange 

the previous expression as:

𝑦 − 𝜌∗𝑊𝑦 = 𝑍𝛿 + 𝜖

In that case, we could obtain an estimator of 𝛿 by OLS:

መ𝛿 = (𝑍′𝑍)−1 𝑍′ 𝐼𝑛 − 𝜌∗𝑊 𝑦

Also, in this case we could also find an estimate of the noise variance parameter: 

𝜎2 =
1

𝑛
𝑒(𝜌∗)𝑒′(𝜌∗)

where 𝑒 𝜌∗ = 𝐲 − 𝜌∗𝑊𝑦 − 𝑍 መ𝛿

Spatial ML Estimation
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These ideas motivate that we can concentrate the log-likelihood function of

the model with respect 𝛿 and 𝜎2 and solve the optimization first with respect 

𝝆 and later, use this ො𝜌 to obtain ML estimates of መ𝛿 and ො𝜎2

The concentrated log-likelihood function of the SAR/SDM is given by:

𝐿𝑛 𝐿 𝜌 = 𝐶 + 𝐿𝑛 𝐼 − 𝜌𝑊 −
𝑁

2
𝐿𝑛𝑆(𝜌)

𝑆 𝜌 = 𝑒 𝜌 ′𝑒 𝜌 = 𝑒0
′𝑒0 − 2𝜌𝑒0

′𝑒𝑑 + 𝜌2𝑒𝑑′𝑒𝑑
𝑒 𝜌 = 𝑒0 − 𝜌𝑒𝑑
𝑒0 = 𝑦 − 𝑍𝛿0
𝑒𝑑 = 𝑊𝑦 − 𝑍𝛿𝑑
𝛿0 = (𝑍′𝑍)−1𝑍′𝑦
𝛿𝑑 = (𝑍′𝑍)−1𝑍′𝑊𝑦

To accelerate optimization with the respect the sacalar parameter 𝜌 Pace and 

Barry (1997) proposed using a grid over the feasible Interval [-1,1]

Spatial ML Estimation
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Idea: Build a sufficient “precise/accurate grid” (i.e, by looping rho over the

interval [-1,1] in steps of 0.001 we have 2001 points) defining the likelihood

profile:

In this example the ො𝜌 =0.48. This value is later used to obtain ML estimates of 

መ𝛿 = 𝛿0 − ො𝜌𝛿𝑑 → ෝσ2 =
1

n
S( ො𝜌)

ML Estimation
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An important aspect of Bayesian methodology is the focus on distributions for the

data as well as the parameters

Bayes’s rule involves combining the data distribution embodied in the likelihood

function with prior distributions for the parameters assigned by the practitioner to

produce posterior distributions for the parameters

Relevant information includes both sample data coming from the likelihood as well

as prior or subjective information embodied in the distributions assigned to the

parameters.

The Bayesian approach to estimation arises from some basic axioms of

probability. For two random variables A and B we have that the joint probability

p(A,B) can be expressed in terms of conditional probability P(A|B) or P(B|A) and the

marginal probability P(A) or P(B): 

𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝐵 𝑝(𝐵)

𝑝 𝐴, 𝐵 = 𝑝 𝐵 𝐴 𝑝(𝐴)

Spatial Bayesian Estimation
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Setting the two equal and rearranging:

𝑝 𝐴, 𝐵 = 𝑝 𝐴 𝐵 𝑝(𝐵)
𝑝 𝐴, 𝐵 = 𝑝 𝐵 𝐴 𝑝(𝐴)

𝑝 𝐵 𝐴 𝑝 𝐴 = 𝑝 𝐴 𝐵 𝑝(𝐵)

gives rise to Baye’s rule:

𝑝 𝐵 𝐴 =
𝑝 𝐴 𝐵 𝑝 𝐵

𝑝(𝐴)

For our purposes we let A = 𝐷 = {𝑦, 𝑋,𝑊} represent the data and 𝜃 = 𝐵 denote the

model parameters such that:

𝑝 𝜃 𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃

𝑝(𝐷)

Key point: Bayesian modeling assumes the parameters have a prior distribution 

𝐩 𝜽 that reflects previous knowledge as well as uncertainty we have prior to

observing the data.

If we know very little then this distribution should represent a vague/ambiguous

probabilistic statement

Spatial Bayesian Estimation
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The shape of the prior distribution on the regressors X given by 

𝜋 𝛽 ~N c, σ2T under different parameterization/degrees of 

certainty:

Completely diffuse (flat and non-informative) prior can be obtained 

setting T equal to a very large number T =10000

Spatial Bayesian Estimation

37



Vicente Rios

A common prior for the spatial lag/error term parameter is the Beta prior which

has a distribution of probability across its range of values given by:  

𝜋 𝜌 ~
1

𝐵𝑒𝑡𝑎(𝑑, 𝑑)

1 + 𝜌 𝑑−1 1 − 𝜌 𝑑−1

22𝑑−1

Spatial Bayesian Estimation
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In the expression:

𝑝 𝜃 𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃

𝑝(𝐷)

𝑝 𝜃 is the prior distribution of the parameters

Usually:

𝜋 𝛽 ~N c, σ2T , 𝜋 σ2 ~𝐼𝐺(𝑎, 𝑏) and 𝜌~𝑈 −1,1 or 𝜌~𝐵𝑒𝑡𝑎 𝑣, 𝑑

𝑝 𝐷 𝜃 is the likelihood function 

𝑝(𝐷) is a fixed data distribution that can be ignored

𝑝 𝜃 𝐷 is the called the posterior distribution of 𝜃

- it represents an “update” of the prior distribution for the parameters 𝜃 after 

conditioning on the sample data

- all Bayesian inference is based on the posterior density

Oftenly, bayesians work with the simplified expression:

𝑝 𝜃 𝐷 ∝ 𝑝 𝐷 𝜃 𝑝 𝜃

Spatial Bayesian Estimation
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Usually, closed/analytical expressions for 𝑝 𝜃 𝐷 do not exist. Thus, Markov Chain 

Monte Carlo (MCMC) methods are used to approximate this distribution from which 

we would make inference

The idea of MCMC is that given an initial value for the parameters of the model

𝜃0 = (𝛽0, 𝜌0, 𝜎0) we can construct a chain of parameter draws that will converge to 

𝑝 𝜃 𝐷 such that:

𝜃0 → 𝜃1 → 𝜃2… → 𝑝 𝜃 𝐷

Metropolis-Hastings

1. Propose 𝜃∗~ 𝑓 𝜃𝑡+1|𝜃𝑡 → (proposal distribution f has to be symmetric (i.e, a 

Normal distribution with the following motion 𝜃𝑡+1= 𝜃𝑡 + 𝑐𝑁[0,1])

2. Acceptance 𝜃𝑡+1 = 𝜃∗ with probability:

𝜓 = min[1,
𝑝 𝜃∗|𝐷 𝑓 𝜃𝑡|𝜃

∗

𝑝 𝜃𝑡|𝐷 𝑓 𝜃∗|𝜃𝑡
]

Spatial Bayesian Estimation
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Spillovers: Key in Regional science

A basic definition of spillovers in a spatial context would be “that changes occurring

in one region exert impact on other regions.”

Changes in the tax rate by one spatial unit might exert an impact on tax rate

setting decisions of nearby regions, a phenomenon that has been labeled tax

mimicking and yardstick competition between local government (see our example

below).

Situations where home improvements made by one homeowner exert a beneficial 

impact on selling prices of neighboring regions

Innovation by university researchers that diffuses to neraby firms

Air or watter pollution generated in one region spills over to nearby regions

Essentially: “to go beyond and diffuse crossing boundaries” 

Inference
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Mathematically, the notion of spillover can be thought as the

derivative
𝝏𝒚𝒊

𝝏𝒙𝒋
≠ 0

This means that changes to explanatory variables in region j

impact the dependent variable in region i

In OLS model we have that 
𝜕𝑦𝑖

𝜕𝑥𝑗
= 0

Spillovers
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Global spillovers

Global spillovers arise when changes in a characteristic of one region impact all

regions’ outcomes. 

This applies even to the region itself as impacts can pass to the neighbors and back 

to the own region (feedback). 

Specifically, global spillovers impact the neighbors, neighbors to the neighbors, 

neighbors to the neighbors to the neighbors, etc.

Global spillovers are related to endogenous interactions passing through the

dependent variable y. 

SLM:𝒚 = 𝛼𝜾𝒏 + 𝜌𝑾𝒚+ 𝑿𝛽 + 𝜀

SDM: 𝒚 = 𝛼𝜾𝒏 + 𝜌𝑾𝒚+ 𝑿𝛽 +𝑊𝑋𝜃 + 𝜀

They lead to a scenario where changes in one region set in motion a sequence of 

adjustments in (potentially) all regions in the sample such that a new long-run steady 

state equilibrium arises. 

Global spillovers
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Local spillovers

Local spillovers represent a situation where the impact falls only on nearby

or inmediate neighbors, dying out before they impact regions that are 

neighbors to the neighbors. 

SLX:𝒚 = 𝛼𝜾𝒏 + 𝑿𝛽 +𝑊𝑋𝜃 + 𝜀

SDEM: 𝒚 = 𝛼𝜾𝒏 + 𝑿𝛽 +𝑊𝑋𝜃 + 𝜆𝑊𝑢 + 𝜀

The main difference is that feedback or endogenous interactions are only

possible for global spillovers. 

However, depending on the structure of W it could happen that a change in a

exogenous factor in a very distant place j affects the dependent variable of i 

Local spillovers
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Consider the SDM, which can be rewritten as:

𝒚 = 𝛼𝜾𝒏 + 𝜌𝑾𝒚 + 𝑿𝛽 +𝑊𝑋𝜃 + 𝜀

𝒚 𝐼 − 𝜌𝑾𝒚 = 𝑿𝛽 +𝑊𝑋𝜃 + 𝜀

𝒚 = (𝐼 − 𝜌𝑊)−1 𝑿𝛽 +𝑊𝑋𝜃 + 𝜀

𝜕𝑦

𝜕𝑋𝑘
= (𝐼 − 𝜌𝑊)−1

𝛽𝒌 𝑤12𝜃𝒌 … 𝑤1𝑛𝜃𝒌
𝑤21𝜃𝒌
⋮

𝑤𝑛1𝜃𝒌

𝛽𝒌
⋮

𝑤𝑛2𝜃𝒌

⋯ 𝑤2𝑛𝜃𝒌
⋱ ⋮
… 𝛽𝒌

𝜕𝐸(𝑦)

𝜕𝑥1𝑘

𝜕𝐸(𝑦)

𝜕𝑥2𝑘
⋯

𝜕𝐸(𝑦)

𝜕𝑥𝑛𝑘
=

𝜕𝐸(𝑦1)

𝜕𝑥1𝑘

𝜕𝐸(𝑦1)

𝜕𝑥2𝑘
…

𝜕𝐸(𝑦1)

𝜕𝑥𝑛𝑘
𝜕𝐸(𝑦2)

𝜕𝑥1𝑘
⋮

𝜕𝐸(𝑦𝑛)

𝜕𝑥1𝑘

𝜕𝐸(𝑦2)

𝜕𝑥2𝑘
⋮

𝜕𝐸(𝑦𝑛)

𝜕𝑥2𝑘

⋯
𝜕𝐸(𝑦2)

𝜕𝑥𝑛𝑘
⋱ ⋮

…
𝜕𝐸(𝑦𝑛)

𝜕𝑥𝑛𝑘

Measuring Spillovers
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Indirect effects: the impact on the observed value of location i given a change in 

the explanatory variable 𝑋𝑘 in location j is:

𝜕𝐸(𝑦𝑖)

𝜕𝑥𝑗𝑘
= 𝑺𝑘(𝑾)𝑖𝑗

where 𝑆𝑘(𝑾)𝑖𝑗 represents the i,j-th element of the matrix

𝑺𝑘 𝑾 = (𝐼 − 𝜌𝑊)−1[𝐼𝛽𝒌 +𝑊𝜃𝒌]

Direct effects: the impact of the expected value of region i, given a change in 

certain variable k for the same region i is given by:

𝜕𝐸(𝑦𝑖)

𝜕𝑥𝑖𝑘
= 𝑺𝑘(𝑾)𝑖𝑖

This impact includes the effect of feedback loops where observation i affects

observation j, and observation j also affects observation i

Thus, a change in 𝑥𝑖𝑘 will affect the expected value of dependent variable in i, this

will pass through the neighbors of i (-i or j) and back to the region itself.

Feedback effects = 𝑺𝑘(𝑾)𝑖𝑖 − 𝐼𝛽𝒌

Measuring spillovers
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Example of Elhorst (2010):

Suppose we have three spatial units that are arranged linearly: unit 1 is a neighbor 

of unit 2, unit 2 is a neighbor of both units 1 and 3, and unit 3 is a neighbor of unit 

2. 

𝑊 =
0 1 0
𝑤21 0 𝑤23

0 1 0
The global spatial multiplier in this system is given by:

= (𝐼 − 𝜌𝑊)−1↔ (1 − 𝜌2)

1 − 𝑤23𝜌
2 𝜌 𝑤23𝜌

2

𝜌𝑤21 1 𝜌𝑤23

𝜌2𝑤21 𝜌 1 − 𝑤23𝜌
2

We can get the previous expresion by calculating the inverse analytically (it is very

tedious to do it by hand)

Measuring spillovers
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= (𝐼 − 𝜌𝑊)−1↔ 1/ 1 − 𝜌2
1 − 𝑤23𝜌

2 𝜌 𝑤23𝜌
2

𝜌𝑤21 1 𝜌𝑤23

𝜌2𝑤21 𝜌 1 − 𝑤23𝜌
2

Then, the partial derivatives of our dependent variable with respect a change in 𝑥𝑘 are 

given by 𝑺𝑘 𝑾 = (𝐼 − 𝜌𝑊)−1[𝐼𝛽𝒌 +𝑊𝜃𝒌]

𝜕𝐸(𝑦)

𝜕𝑥1𝑘

𝜕𝐸(𝑦)

𝜕𝑥2𝑘
⋯

𝜕𝐸(𝑦)

𝜕𝑥𝑛𝑘

= 1/ 1 − 𝜌2
𝛽𝒌 1 − 𝑤23𝜌

2 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 𝑤23𝜌
2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌

𝑤21𝜌 𝛽𝒌 + 𝑤21𝜃𝒌 𝛽𝒌 + 𝜌𝜃𝒌 𝜌𝑤23 𝛽𝒌 +𝑤23𝜃𝒌
𝑤21𝜌

2 𝛽𝒌 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 1 − 𝑤21𝜌
2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌

Measuring spillovers
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Direct effects = diagonal of previous matrix

Indirect effects = every non diagonal elements

What happens with the IEs if 𝜌 = 0 and 𝜃𝒌 = 𝟎?

𝜕𝐸(𝑦)

𝜕𝑥1𝑘

𝜕𝐸(𝑦)

𝜕𝑥2𝑘
⋯

𝜕𝐸(𝑦)

𝜕𝑥𝑛𝑘

= 1/ 1 − 𝜌2
𝛽𝒌 1 − 𝑤23𝜌

2 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 𝑤23𝜌
2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌

𝑤21𝜌 𝛽𝒌 + 𝑤21𝜃𝒌 𝛽𝒌 + 𝜌𝜃𝒌 𝜌𝑤23 𝛽𝒌 + 𝑤23𝜃𝒌
𝑤21𝜌

2 𝛽𝒌 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 1 − 𝑤21𝜌
2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌

=1/ 1 − 𝜌2
𝛽𝒌 1 − 𝑤230 + 𝑤210 0 0𝛽𝒌 + 0 𝑤230 𝛽𝒌 + 0𝑤23 0

𝑤210 𝛽𝒌 + 𝑤210 𝛽𝒌 + 0 0𝑤23 𝛽𝒌 + 𝑤230

𝑤210 𝛽𝒌 + 𝑤210 0 0𝛽𝒌 + 0 1 − 𝑤210 𝛽𝒌 + 0𝑤23 0

𝜕𝐸(𝑦)

𝜕𝑥1𝑘

𝜕𝐸(𝑦)

𝜕𝑥2𝑘
⋯

𝜕𝐸(𝑦)

𝜕𝑥𝑛𝑘
=

𝛽𝒌 0 0
0 𝛽𝒌 0
0 0 𝛽𝒌

Measuring spillovers
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Indirect effects = every non diagonal elements

What happens with the IEs if 𝜌 ≠ 0 and 𝜃𝒌 = 𝟎? (global effects)

𝜕𝐸(𝑦)

𝜕𝑥1𝑘

𝜕𝐸(𝑦)

𝜕𝑥2𝑘
⋯

𝜕𝐸(𝑦)

𝜕𝑥𝑛𝑘

= 1/ 1 − 𝜌2
𝛽𝒌 1 − 𝑤23𝜌

2 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 𝑤23𝜌
2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌

𝑤21𝜌 𝛽𝒌 + 𝑤21𝜃𝒌 𝛽𝒌 + 𝜌𝜃𝒌 𝜌𝑤23 𝛽𝒌 + 𝑤23𝜃𝒌
𝑤21𝜌

2 𝛽𝒌 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 1 − 𝑤21𝜌
2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌

= 1/ 1 − 𝜌2
𝛽𝒌 1 − 𝑤23𝜌

2 + 𝑤21𝜌 𝜌𝛽𝒌 𝑤23𝜌
2 𝛽𝒌

𝑤21𝜌 𝛽𝒌 𝛽𝒌 𝜌𝑤23 𝛽𝒌
𝑤21𝜌

2 𝛽𝒌 𝜌𝛽𝒌 1 − 𝑤21𝜌
2 𝛽𝒌

In this case the off-diagonal elements are different from zero so a change in 
𝜕𝐸(𝑦𝑖)

𝜕𝑥𝑗𝑘
≠ 0

Measuring spillovers
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Indirect effects = every non diagonal elements

What happens with the IEs if 𝜌 = 0 and 𝜃𝒌 ≠ 𝟎? (local effects)

𝜕𝐸(𝑦)

𝜕𝑥1𝑘

𝜕𝐸(𝑦)

𝜕𝑥2𝑘
⋯

𝜕𝐸(𝑦)

𝜕𝑥𝑛𝑘

= 1/ 1 − 𝜌2
𝛽𝒌 1 − 𝑤23𝜌

2 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 𝑤23𝜌
2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌

𝑤21𝜌 𝛽𝒌 + 𝑤21𝜃𝒌 𝛽𝒌 + 𝜌𝜃𝒌 𝜌𝑤23 𝛽𝒌 + 𝑤23𝜃𝒌
𝑤21𝜌

2 𝛽𝒌 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 1 − 𝑤21𝜌
2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌

= 1/ 1 − 𝜌2
𝛽𝒌 𝜃𝒌 𝟎

𝑤21𝜃𝒌 𝛽𝒌 𝑤23𝜃𝒌
𝟎 𝜃𝒌 𝛽𝒌

In this case the off-diagonal elements are different from zero so a change in 
𝜕𝐸(𝑦𝑖)

𝜕𝑥𝑗𝑘
≠ 0

Local effects: if 𝑤𝑖𝑗 is non-zero(zero) then the effect of 𝑥𝑗𝒌 on 𝑦𝑖 is also non zero

(zero). 

Measuring spillovers
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The direct effects and indirect effects are different for different units in the

sample

𝜕𝐸(𝑦)

𝜕𝑥1𝑘

𝜕𝐸(𝑦)

𝜕𝑥2𝑘

𝜕𝐸(𝑦)

𝜕𝑥3𝑘

=

𝛽𝒌 1 − 𝑤23𝜌
2 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 𝑤23𝜌

2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌
𝑤21𝜌 𝛽𝒌 + 𝑤21𝜃𝒌 𝛽𝒌 + 𝜌𝜃𝒌 𝜌𝑤23 𝛽𝒌 + 𝑤23𝜃𝒌

𝑤21𝜌
2 𝛽𝒌 + 𝑤21𝜌 𝜃𝒌 𝜌𝛽𝒌 + 𝜃𝒌 1 − 𝑤21𝜌

2 𝛽𝒌 + 𝜌𝑤23 𝜃𝒌

For spatial unit 1 the response of y after change in the regressor 𝑥𝑘 in spatial units 2 and 

3 is given by:

𝐼𝐸 1 =
𝜕𝐸(𝑦1)

𝜕𝑥2𝑘
+
𝜕𝐸(𝑦1)

𝜕𝑥3𝑘
= 𝜌𝛽𝒌 + 𝜃𝒌 + 𝑤23𝜌

2 𝛽𝒌 + 𝜌𝑤23𝜃𝒌

For spatial unit 2:

𝐼𝐸 2 =
𝜕𝐸(𝑦1)

𝜕𝑥2𝑘
+
𝜕𝐸(𝑦1)

𝜕𝑥3𝑘
= 𝑤21𝜌 𝛽𝒌 + 𝑤21𝜃𝒌 + 𝜌𝑤23 𝛽𝒌 + 𝑤23𝜃𝒌

These magnitudes can be different depending on connectivity!

Measuring spillovers
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It can be noted that the change of each variable in each region implies

𝑛2 potential marginal effects

If we have K variables in our model, this implies 𝑘𝑛2 potential

measures

Even for small vales of n and k it may already be rather difficult to

report these results compactly

We need summary measures!

Average Direct Effects

Average Indirect Effects

Average Total Effects

Measuring spillovers
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In the SDM the
𝜕𝐸(𝑦)

𝜕𝑥𝑘
was given by:

= (𝐼 − 𝜌𝑊)−1

𝛽𝒌 𝑤12𝜃𝒌 … 𝑤1𝑛𝜃𝒌
𝑤21𝜃𝒌
⋮

𝑤𝑛1𝜃𝒌

𝛽𝒌
⋮

𝑤𝑛2𝜃𝒌

⋯ 𝑤2𝑛𝜃𝒌
⋱ ⋮
… 𝛽𝒌

Direct Effects: are the average of the diagonal elements in previous

expression. 

Indirect Effects: average row/column off-diagonal elements in previous 

expression 

To analyze its significance → simulation of the distribution of impacts by 

Monte Carlo methods.

Measuring spillovers
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Taxonomy of models
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Different W matrices imply very distinct measures of spatial autocorrelation, 

degree of connectedness, etc.

Different models imply different interpretations for the nature of cross-

regional/countries interactions

Different models may need very different procedures of estimating spillover

effects

The Questions are:

How to select the correct W?

How to select the correct spatial functional form of the model in my analysis?

In the past→ Lagrange multiplier tests or Likelihood ratio tests

In the present and future→ Bayesian posterior probabilitites

Spatial Model Selection
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Posterior model probability is the key object in Bayesian inference:

𝑝 𝜃 𝐷 =
𝑝 𝐷 𝜃 𝑝 𝜃

𝑝(𝐷)

Given a set of i = 1,…, m  Bayesian models, each would be represented by a 

likelihood function and a prior distribution as:

𝑝 𝜃𝑖 𝐷,𝑀𝑖 =
𝑝 𝐷 𝜃𝑖 , 𝑀 𝑝 𝜃𝑖|𝑀𝑖

𝑝(𝐷|𝑀𝑖)

Treating the posterior distribution as conditional on the model specification 𝑀𝑖 we 

can apply Bayes’ rule to expand terms like 𝑝(𝐷|𝑀𝑖) which leads to the set of 

posterior model probabilities:

𝑝 𝑀𝑖 𝐷 =
𝑝 𝐷 𝑀𝑖 𝑝 𝑀𝑖

𝑝(𝐷)

This serve as the basis for inference about different models given the sample data. 

The term 𝑝 𝐷 𝑀𝑖 is called the marginal likelihood:

𝑝 𝐷 𝑀𝑖 = න𝑝 𝐷 𝜃𝑖 , 𝑀 𝑝 𝜃𝑖|𝑀𝑖 𝑑𝜃
𝑖

Spatial Model Selection
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We assume a set of alternative spatial models M = 𝑀1, 𝑀2,…, 𝑀𝑚 as the possible 

candidates to explain our data each of them based on a different spatial weight 

matrix W while holding fixed other aspects of the specification such as the X or 

the functional form (SAR/SDM/SEM/SDEM) fixed.

Prior probabilitites are specified for each model: 𝜋 𝑀𝑖

We usually set 𝜋 𝑀𝑖 =
1

m
making each model equally likely a priori

Prior distributions for the parameters: 𝜋(𝜂) with 𝜂 = (𝛼, 𝛽, 𝜌, 𝜎)

The joint probability of the set of models, parameters and data takes the form:

𝑝(𝑀, 𝜂, 𝐷) = 𝜋 𝑀 𝜋 𝜂|𝑀 𝜋 𝐷|𝜂,𝑀

Application of Bayes’ rule produces the joint posterior for both models and 

parameters:

𝑝(𝑀, 𝜂|𝐷) =
𝜋 𝑀 𝜋 𝜂|𝑀 𝜋 𝐷|𝜂,𝑀

𝜋 𝐷

Posterior model probabilitites requires integration over 𝜂 leading to:

𝑝(𝑀|𝐷) = න𝑝 𝑀, 𝜂 𝐷 𝑑 𝜂

Spatial Bayesian Model Selection
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Question: Do Bayesian Model Selection Works Well?

Monte Carlo experiments on the accuracy of the model selection. 

- W Selection conditional to the functional form

- Functional form selection given W 

Sensitivity checks:

[a] Sample Size

[b] Spatial Dependence Intensity

[c] Signal-to-noise ratio

Spatial Bayesian Model Selection
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Experiment [A]: W Selection conditional to the functional form.

The true model is:

𝑌𝑡 𝑊𝑘7 = 𝛼 + 𝜌𝑊𝑘7𝑌𝑡 + 𝜙𝑌𝑡−1 + 𝜆𝑊𝑘7𝑌𝑡−1 + 𝑋𝑡𝛽 +𝑊𝑘7𝑋𝑡𝜃 + 𝜀

Model comparison is carried over alternative K-nearest neighbor's structures, 

𝑊 𝑘 = 1, . . , 𝐾 so we estimate a number of models by means of Spatial Bayesian 

techniques to check if  P(𝑊𝑘7|𝑌𝑡 𝑊𝑘7 ) > P(𝑊𝑘𝑚|𝑌𝑡 𝑊𝑘7 )

Sensitivity checks:

Signal-to-noise ratio: 𝜎= 2, 5, 10.

Spatio-temporal parameter configurations:

C1: [𝜌 = 0.3, 𝜙 = 0.35, 𝜆 = -0.1] Medium Spatial Dep 

C2: [𝜌 = 0.7, 𝜙 = 0.35, 𝜆 = -0.2 ] High Spatial Dep 

C3: [𝜌 = 0.1, 𝜙 = 0.35, 𝜆 = -0.2] Low Spatial Dep 

Sample Size: European NUTS-2 regions (n=272) vs Spanish Municipalities above 

1,000 inhabitants (n=3032). 

Spatial Bayesian Model Selection
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Spatial Bayesian Model Averaging
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Experiment [B]: Functional form Selection conditional to W

The true model is a Dynamic SDM

𝑌𝑡 = 𝛼 + 𝜌𝑊𝑌𝑡 + 𝜙𝑌𝑡−1 + 𝜆𝑊𝑌𝑡−1 + 𝑋𝑡𝛽 +𝑊𝑋𝑡𝜃 + 𝜀𝑡
Model comparison is carried over alternative spatial functional forms:

DSEM: 𝑌𝑡 = 𝛼 + 𝜙𝑌𝑡−1 + 𝜆𝑊𝑌𝑡−1 + 𝑋𝑡𝛽 + 𝜌𝑊𝑢𝑡 + 𝜀𝑡
DSLM:   𝑌𝑡 = 𝛼 + 𝜌𝑊𝑌𝑡 + 𝜙𝑌𝑡−1 + 𝜆𝑊𝑌𝑡−1 + 𝑋𝑡𝛽 + 𝜀𝑡
DSDEM: 𝑌𝑡 = 𝛼 + 𝜙𝑌𝑡−1 + 𝜆𝑊𝑌𝑡−1 + 𝑋𝑡𝛽 +𝑊𝑋𝑡𝜃 + 𝜌𝑊𝑢𝑡 + 𝜀𝑡

Sensitivity checks:

Signal-to-noise ratio: 𝜎= 2, 5, 10.

Spatio-temporal parameter configurations:

C1: [𝜌 = 0.3, 𝜙 = 0.35, 𝜆 = -0.1] Medium Spatial Dep 

C2: [𝜌 = 0.7, 𝜙 = 0.35, 𝜆 = -0.2 ] High Spatial Dep 

C3: [𝜌 = 0.1, 𝜙 = 0.35, 𝜆 = -0.2] Low Spatial Dep 

Sample Size: European NUTS-2 regions (n=272) vs Spanish Municipalities above 

1,000 inhabitants (n=3032). 
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Summing up

Bayesian model selection in the context of dynamic spatial panel data models is 

highly accurate (this also holds for the cross-sections or static spatial panels)

Accuracy increases with sample size, with a higher signal to noise ratio and with the 

intensity of spatial dependence

Bayesian model selection performs better finding true models among alternative 

spatial specifications than across alternative spatial weight matrices
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