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Spatial Econometric Models

o Spatial econometric models deal with interaction effects among
geographical units.

e Examples are economic growth rates of OECD countries over T years, monthly
unemployment rates of EU regions in the last decade, and annual tax rate
changes of all jurisdictions in a country since the last election.

¢ Spatial interaction effect models

In modeling terms, three different types of interaction effects can be distinguished:
@  Endogenous interaction effects among the dependent variable (WY)

@y Exogenous interaction effects among the independent variables (WX)

@iy Interaction effects among the error terms (Wu).



Spatial Econometric Models

e Endogenous interaction effects

Refer to the case where the decision of a particular unit A (or its economic decision
makers) to behave in some way depends on the decision taken by other units,
among which, say, unit B:

Dependent variable y of unit A «<»Dependent variable y of unit B

Endogenous interaction effects are typically considered as the formal specification
for the equilibrium outcome of a spatial or social interaction process, in which the
value of the dependent variable for one agent is jointly determined with that of the
neighboring agents.

Literature on strategic interaction among local governments, for example,
endogenous interaction effects are theoretically consistent with the situation where
taxation and expenditures on public services interact with taxation and
expenditures on public services in nearby jurisdictions (Brueckner 2003).



Spatial Econometric Models

e EXogenous interaction effects

Exogenous interaction effects, where the decision of a particular unit to behave
In some way depends on independent explanatory variables of the decision
taken by other units

¢ Independent variable x of unit B —Dependent variable y of unit A

o Capital can flow across borders; hence the amount an individual economy
saves does not have to be the same as the amount it invests. Per capita income
In one economy also depends on the savings rates of neighboring economies.
Not only the savings rate but also other explanatory variables may affect per
capita income in neighboring economies.

¢ Inboth the theoretical and the empirical literature on economic growth and
convergence among countries or regions is not only taken to depend on the
initial income level and the rates of saving, population growth, technological
change and depreciation in the own economy, but also those of neighboring
economies (Ertur and Koch 2007; Elhorst et al. 2010)



Spatial Econometric Models

Interaction effects among the error terms
e Error term u of unit A <»>Error term u of unit B

Interaction effects among the error terms do not require a theoretical
model for a spatial or social interaction process, but, instead, is
consistent with a situation where determinants of the dependent
variable omitted from the model are spatially autocorrelated, and
with a situation where unobserved shock follow a spatial pattern.



Spatial Econometric Models

Originally, the central focus of spatial econometrics has been on one type of
Interaction effect in a single equation cross-section setting.

Usually, the point estimate of the coefficient of this interaction effect was used to
test the hypothesis as to whether spatial spillover effects exist.

Most of the work was inspired by research questions arising in regional science
and economic geography, where the units of observations are geographically
determined and the structure of the dependence among these units can somehow be
related to location and distance.

However, more recently, the focus has shifted to models with more than one type
of interaction effects, to panel data, and to the marginal effects of the
explanatory variables in the model rather than the point estimates of the interaction
effects



Spatial Lag Model

o Consider

n
Vi = a"‘PzWinj + X0 + &
j=1
where:
w;; Is the th element of W

?:1 w;; y; IS the weighted average of the dependent variable

g; 1s the error term such that E(g;) = 0

p Is the spatial autoregressive parameter which measures the intensity of the
spatial interdependence

p > 0 positive spatial interdependence
p < 0 negative spatial interdependence
p = 0 traditional OLS model

This model is known as Spatial Lag Model (SLM) or the Spatial
Autoregressive Model (SAR
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Spatial Lag Model

e Inthis model, a change in a regressor k in spatial unit i AX;;, is directly
transmitted to the dependent variable of spatial unit i producing a change

Ay;
« However, the effect on i is also transmitted to J: Ay; — Ay;

and the effect In J is transmitted back to I: Ay; — Ay;

and back to j....
X1 X2
- - Effects
11 Y2 — : non-spatial effects
> --»: spatial effects
€1 €9



Spatial Lag Model

e The SLM specification with covariates in matrix form can be written as:

y=at, + pWy+ Xp + ¢

where y is a n x 1 vector of observations of the dependent variable, X isan n x K
matrix of observations on the explanatory variables, £ is a k x 1 vector of parameters
and ¢,, is an n x 1 vector of ones.

It is also important to find the reduced form of the process.

The reduced form of a system of equations is the result of solving the system for
the endogenous variables.

This gives the endogenous variables as functions of exogenous variables.

For example, the general expression of a structural form is f(y, X, €) = 0 whereas
the reduced form is given by y = g(X, ¢), with g as function.
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Spatial Lag Model

Reduced form of the SLM
y=pWy+Xp +¢

y=U-pW)'Xp + (I —pW) ‘¢

We need (I — pW)~1 to be invertible. From standard algebra theory any matrix
A is invertible if det(A) is non zero.

If W is not row-normalized (I — pW)~tis invertible if:
-1 -1
Wnin < P < Wmax
Wmin, Pmasx are the minimum and maximum eigenvalues of W

If W is row-normalized, then (I — pW) ™1 is invertible if:
lpl <1

Therefore, the spatial structure embodied in W is closely connected to p.
Spatial stationariy is garanteed if w5, < p < 1 (different from time-series)
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Spatial Lag Model

The expectation is given by:
E(y|X,W) = E[(I — pW)™Hat, + XB} + (I — pW) 7| X, W ]

To understand this expresion, we need to know the Leontief expansion:

If |p] < 1, then (I — pW)™! = 2, (W)’
Then, we can rewrite the model as.

y =1+ pW + p?>W2+. ){at, + XB} + (I + pW + p?W?+..) ¢
= at, + pWi,a + p*W?,a +..+XB + pWXB + p*W?XB+..
+ &+ pWe + p?’W?e
This expresion can be simplified since the infinite series:

at,

(1-p) Multiplier effect
Diffusion effect

+ XB + pWXL + p*W2XB+..+ e+ pWe + p?W?e+..

at, + pWio,a + p*W?i,a —

aly,

y =

(1-p)
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Spatial Durbin Model

e The DGP is:
y=at, + pWy + X +WX0 + ¢

y=(—-pW) Y (XB +WX6) + (I —pW) e

The SDM results in a spatial aturoregressive model of a special form,
Including not only the spatially lagged dependent variable and the
explanatory variables, but also the spatially lagged explanatory variables,
WX.

y depends on own-regional factors from matrix (X), plus the same factors
averaged over the n neighboring regions (WX)

This model can be defined written as a SAR model by defining:
Z=[, X WX]and 6 = [a B 0]
y=pWy+27Z5+¢€
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Spatial Durbin Model

In the SDM, a change In a regressor K in spatial unit j AXj; is directly
transmitted to both the dependent variable of spatial unit i producing
a change Ay; and to the dependent variable of j Ay;

« However, the effect on I is also transmitted to j: Ay; — Ay;
and the effect In J is transmitted back to I: Ay; — Ay;

and backtoj....

X1 X2
v T S A Eﬂ'eCtS
Y1 Y2 — : non-spatial effects
-—»: spatial effects
€1 €2

Vicente Rios




Spatial Error Model

e \We can also use spatial lags to reflect dependence in the disturbance
process, which lead to the SEM:

y=Xf+u
u=AWu+¢

The reduced form is given by:
y=XB+ A - W) ¢

where A iIs the autoregressive parameter for the error lag (to distinguish
the notation from the spatial autoregressive coefficient in a spatial lag
model) and ¢ is a generally 1.1.d noise
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Spatial Error Model

e Inthe SEM arandom innovation in spatial unit i &; affects the residuals
of 1, which are spatially correlated, thus affecting the dependent variable.

e Inthis model, a shock ¢;is directly transmitted to the error term u;
variable of spatial unit i producing a change Ay;

« Butalso, the effect of the shock &; — wu;
and the effect In J is transmitted back to It u; — u;

and backtoj....

X1 X

Effects
n Y2 — : non-spatial effects
T - - --»: spatial effects

€1 R €9
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Other spatial models

e The Spatial Durbin Error is given by:
y =X +WX0+u

u=AWu+¢

The reduced form is given by:
y=XB+WX0+ (I —AW) ¢

e The SLX is given by:
y =X +WX0 +u

e The SARAR (or SAC) is given by:
y=pWy+Xp +u
u=AWu+e¢

e The General Nesting Model (GNS) is given by:
y=pWy+ X6+ WX0 +u
u=AWu+c¢
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Taxonomy of spatial models

SAC
Spatial Lag Model
A=0
y = pWy+Xp+u
r= p W X
_ AWude y=pWy+XB+e

AT

=

&
G al nesting spatial del
S R S Spatial durbin model SLX OLS
A=10 v =1
= pWy+XB+WX~vy+u
Y pPWY + X B y = pWy+XB+WXy+e y=XB+ WX~y +e y=Xp+e
u = MWu+4e

o

W

Spatial durbin Spatial error model

error model
v=10
y = XB8+WXv+4+u y = XB+tnu
— AWudte u = rAWu+te
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Taxonomy of spatial models

¢ Traditionally, the parameter restrictions that allow the researcher to find the
specification for the empirical analysis were analyzed by means of Likelihood
Ratio Tests / Lagrange Multiplier tests

e Approaches
« Specific to general approach (LM tests, Anselin 1988; RLM Anselin, 1996)
Start with the OLS, check if SAR/SEM fit better the data
If they do, then check if the SDM/SDEM fit better the data tan SAR/SEM....

« General to specific approach (Florax et al., 2003)

Start with the SDM/SDEM and check if the SDM/SDEM can be simplified to SAR/SEM
models.

If they can, then check if SAR/SEM can be simplified to OLS

Problem: Depending on your starting point you may get a different
specification. Not very reliable.

Nowadays: Bayesian Model Selection

Vicente Rios 19




Motivating Spatial Models

e Long-run equilibrium motivation

Consider the following:
Ve = pWye 1 + X + &

y;. dependent variable at time t (i.e, house selling price)
Wy,._q: space-time lag (average value of neighbors past year)

X;: characteristics of regions remain relatively fixed over time
Xt — X

Note that we can replace y;_; = pWy;_, + X + &;_, producing:
Ve = pW (WY + XB + &) + XB + &

ye = XB + pWXpE + PZWZYt—z + &+ pWery
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Motivating Spatial Models

e Recursive substitution for past values of the vector y,_,. on the right hand side of
previous expresion over g periods leads to:

Ve = pPW(Wyi_p + XB + &_1) + XB + &
Ve = [+ pW 4+ p*W24. +p97 W DX + pIWy, o + u,
Up = & + pWer_g + p*Woer_p+. . +pT W e o1,
Noting that:
E(y,) = (I + pW + p*W?2+.. +p? ' WIHXB + pIW ly,_,,
where we used the fact that E(e;_,) = 0, r=0,...,q-1 which also implies that E (u;) =
0
Taking the limit:
lim E(yy) = (I — pW)~'X
q—©

Note that we use the fact that the magnitude of p9W9y,_, tends to zero for large g,
under the assumption that |p|<1 and being W row-normalized

Point: ASLM/SAR can emerge as a consequence of a dynamic process where past

neighboring decisions are taken into account
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Motivating Spatial Models

¢ Omitted variable motivation

Consider the process
y=Xp +z6
where x and z are uncorrelated random vectors of dimension n x 1, and the vector z

follows the following spatial autoregressive process:
z=AMWz+r

z=(—-W)1r
where r~N (0, o%1). Examples of z are culture, social capital, neighborhood prestige.
If z is not observed directly, then:
y=Xpf +u
u=(I—-AW)1e

wheree =6r - y=XB+U—-2W) roy=XB+U—-2W) ¢
Then we have the DGP for the spatial error model.

This makes the SEM a very useful specification when you have omitted variables
z uncorrelated with X that exhibit a spatially correlated pattern (we do not always
have a measurement for everything)
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SDM and Omitted Variables Motivation

Now suppose that X and z are correlated and given by the following process:
y=Xf+z
z=AMWz+u
u=Xy+v
v ~N(0,0%])

where the scalar parameters y and o2 govern the strength of the relationship between X
and z = (I — AW)~tu. Inserting u = Xy + v into the SEM we obtain:

ye =XB+ U —-2W) tu

=XB+ U - W)Xy +v)

=X+ - W)Xy +U-2W)1v
y(I—pW) =U-pW)XL+Xy+v
y=pWy+X(B+vy)+WX(—pB) +v

This is the SDM, which included a spatial lag of the dependent variable y, as well as
the explanatory variables X.

SDM: useful when we have omitted variables z that follow a spatial patern and

that are correlated with the regressors
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Estimation: OLS bias

In a time series context, the OLS estimator remains consistent even when a lagged
dependent variable is present, as long as the error term does not show serial
correlation

While the OLS estimator may be biased in small simples it can still be used for
asymptotic inference.

In spatial context, this rule does not hold, irrespective of the properties of the error
term.

Consider the most basic SAR model (with covariates omitted):
y=pWy+¢
The OLS estimator of p would be:

p=(Wy) Wy) Wy)y - X'X)"X'y
p=(Wy) Wy)™ Wy)' [oWy + ]
p=(Wy) wWy)™ Wy)pWwy + | (Wy) Wy)) ™ (Wy)'e]
p=p+| (Wyywy) ™ (wy)e]

The second term does not ei ual to zero and the estimator will be biased
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Estimation: OLS bias

If we open the term (Wy)'e in the following expression
A , ~1 .
p=p+ [ (Wy) (wy))  (Wy) 61
(Wy) = 'W'(I — pW)~ ! € and take its expected value for a W matrix of the form:

0 1 0 O] 0 1 0 0
11 0 1 O : ) . . 105 0 05 0
W = 01 0 1 or its row-normalized version W = 0 05 0 05
0 0 1 0] 0 O 1 O
we get

2 (o 2
_ 20003 p)whereD=1—3p2+p4

E[W'(I — pW) ™1 ¢]

252 5 2
E[gW'(I — pW) 1g] = i p%‘ 7 ) where D =1 — G) p% + (i)p4
which can only be 0 if p=0 (the other solutions for p violate the condition | p|<1
In the first case p =+/—,/3/2 while in the second one p =+/—,/5/4
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Estimation: OLS bias

y=05Wy+¢ee~N(0,1)
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Estimation: OLS bias

e We can see how increased spatial dependence overshoots the bias

Mean asbsolute percentage error (MAPE
N
(&)
o

50 7

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Vicente Rios 27




e Estimation of Spatial Models
« IV/2SLS regression
« Maximum Likelihood
. Bayesian

(we will focus on SAR/SDM models but similar procedures apply
for SEM/SDEM models)

These estimation technigues both have advantages and
disadvantages.

28
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[\V-2SLS Estimation

I\VV/2SLS regression in spatial models attempts to instrument the endogenous spatial
term WY in SAR/SDM:

y=pWy+Xp +e€

The problem when making inferences about the effect of a change in X on y through
3 is that the things here are not constant because:

AX - Ay - WAy — Ay..

We need some other variables Q (instruments) that correlate with Wy and that at the

same time are not caused by y such that we can break
AX - Ay EWy — Ay

Because of AQ/Ay =AQ/Ae=0

such that when we look at 3, we are effectively picking up:
AX — Ay
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[\V/-2SLS Estimation

This endogeneity issue can be addressed with two-stage methods based on the
existence of a set of instruments Q which are correlated with the original variables
Z=[ Wy X] but uncorrelated with the error term.

If Q is the same column dimension as Z the IV estimate of the parameters of the model
n=(p, B)Is
n=1[Q'Z]7'Q"y
In the general case where Q is larger than Z, the problem is a minimization of f:
minf(n) = (y —Zn)'QMQ' Q' Q'(y — Zn)
with solution:
nw = [Z'PZ]7*Z'Py
where P = Q[Q'Q]~1Q’ is an indempotent projection matrix (i.e, PP=P)

P can be seen as a matrix of predicted values from regressions of Z on the instruments
inQ (i.e Z=f(Q)) in a first stage.
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[\V-2SLS Estimation

To see this more clearly, the idea would be that of running in a first stage, the
following regression:

Wy =Qm+v
and then used predicted values of Wy instead of Wy in:
y=pWy+XB+e—>y=pWy+XB+e

To obtain an unbiased/consistent estimator of p and g

The full thing/complication on 1VV/2SLS regressions is therefore “what to pick”
as Q.

Main proposals so far:

Kelejian and Prucha: Q = [X, WX, W?2X]
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Spatial ML Estimation

y=pWy+a,, + X +WX0 + €

y =, —pW) Y at, + X8+ WX0 +¢€)
e~N(0,0%1,)
This model can be defined written as a SAR model by defining:
Z =[t, X WX]and 6§ = [a B 0] which leads to:

y=pWy+Z5+€ ory=(U, — pW) 1(Z6+¢€)
If the true value of the parameter p was known, let’s call it p*, we could re-arrange
the previous expression as:
y—pWy=256+c¢€
In that case, we could obtain an estimator of 6 by OLS:
§=(Z'2)y " Z'(I, — p*W)y
Also, in this case we could also find an estimate of the noise variance parameter:

—

57 = L e(p")e'(p")
n

where e(p*) =y — p*Wy — Z6
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Spatial ML Estimation

These ideas motivate that we can concentrate the log-likelihood function of
the model with respect § and o2 and solve the optimization first with respect

p and later, use this p to obtain ML estimates of § and 62
The concentrated log-likelihood function of the SAR/SDM is given by:
InL(p) =C + Ln|l — pW| —gLnS(p)
S(p) = e(p)'e(p) = epeq — 2pegeq + peq'eq

e(p) = ey — peg
eg =y — Zb,
ed = Wy—ZSd

6o =(Z'2)" 17"y
6y =(Z'2)1Z'Wy

To accelerate optimization with the respect the sacalar parameter p Pace and
Barry (1997) proposed using a grid over the feasible Interval [-1,1]
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ML Estimation

Idea: Build a sufficient “precise/accurate grid” (i.e, by looping rho over the
Interval [-1,1] in steps of 0.001 we have 2001 points) defining the likelihood
profile:

-250

-300

-350

Ln (p)

-400 |

-450

Log profile
— = y max

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
-500 |- :
|
|

-550 :
-1 -0.5 0 0.5 1

value of p

In this example the p =0.48. This value is later used to obtain ML estimates of
n 1
6 =8y — pdy — G =-5(0)
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Spatial Bayesian Estimation

An important aspect of Bayesian methodology is the focus on distributions for the
data as well as the parameters

Bayes’s rule involves combining the data distribution embodied in the likelihood
function with prior distributions for the parameters assigned by the practitioner to
produce posterior distributions for the parameters

Relevant information includes both sample data coming from the likelihood as well
as prior or subjective information embodied in the distributions assigned to the

parameters.

The Bayesian approach to estimation arises from some basic axioms of
probability. For two random variables A and B we have that the joint probability
P(A,B) can be expressed in terms of conditional probability P(A|B) or P(B|A) and the
marginal probability P(A) or P(B):

p(4,B) = p(A|B)p(B)

p(4,B) = p(B|A)p(4)
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Spatial Bayesian Estimation

Setting the two equal and rearranging:
p(4,B) = p(A|B)p(B)
p(4,B) = p(B|A)p(4)

p(B|A)p(A) = p(A|B)p(B)
gives rise to Baye’s rule:

_ p(A|B)p(B)
p(B|A) = (A

For our purposes we let A = D = {y, X, W} represent the data and & = B denote the
model parameters such that:

_ p(D|9)p(6)
p(0|D) = > D)

Key point: Bayesian modeling assumes the parameters have a prior distribution
p(0) that reflects previous knowledge as well as uncertainty we have prior to
observing the data.

If we know very little then this distribution should represent a vague/ambiguous
probabilistic statement
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Spatial Bayesian Estimation

e The shape of the prior distribution on the regressors X given by
(8)~N(c, 0*T) under different parameterization/degrees of

0.4

certainty:

0.35

03 r

0.25

0.05

0

-40

Not-informative (c=0, T=10)
Informative (c=0, T =1)
Medium (c=0, T = 5)

ﬂ

-30 -20 -10

g

0 10 20 30

Completely diffuse (flat and non-informative) prior can be obtained
setting T equal to a very large number T =10000
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Spatial Bayesian Estimation

A common prior for the spatial lag/error term parameter is the Beta prior which
has a distribution of probability across its range of values given by:

1 (A+p4ta-pt
Beta(d, d) 22d-1

m(p)~

0.8

—1 —1
= -]
\\\‘\
s
.-’.I
=TI =W
o
(S
=
[a—

Prior density
=] =] =] =
) w = &
T .,
)
7
|

.=
[
—

~e

p values
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Spatial Bayesian Estimation

In the expression:

p(D|0)p(6)
0|D) =
p(6|D) > D)
p(6) is the prior distribution of the parameters

Usually:

w(B)~N(c, 6°T), w(0%)~IG(a,b) and p~U[—1,1] or p~Beta[v, d]
p(D|6) is the likelihood function

p(D) is a fixed data distribution that can be ignored

p(0|D) is the called the posterior distribution of 8

it represents an “update” of the prior distribution for the parameters 6 after
conditioning on the sample data

all Bayesian inference is based on the posterior density

Oftenly, bayesians work with the simplified expression:
p(0|D) x p(D|6)p(6)
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Spatial Bayesian Estimation

Usually, closed/analytical expressions for p(8|D) do not exist. Thus, Markov Chain
Monte Carlo (MCMC) methods are used to approximate this distribution from which
we would make inference

The idea of MCMC is that given an initial value for the parameters of the model

8y = (Lo, Po, 0p) We can construct a chain of parameter draws that will converge to

p(6|D) such that:
0y > 6, - 0, .- p(0|D)

Metropolis-Hastings

1. Propose 8"~ f(0;,1]6;) — (proposal distribution f has to be symmetric (i.e, a
Normal distribution with the following motion 6;,,=6; + cN[0,1])

2. Acceptance 8;,, = 0" with probability:
b = min1, 21D (0:107)
"p(0:1D)f(6%16:)
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MEE

o Spillovers: Key in Regional science

A basic definition of spillovers in a spatial context would be “that changes occurring
In one region exert impact on other regions.”

Changes in the tax rate by one spatial unit might exert an impact on tax rate
setting decisions of nearby regions, a phenomenon that has been labeled tax
mimicking and yardstick competition between local government (see our example
below).

Situations where home improvements made by one homeowner exert a beneficial
Impact on selling prices of neighboring regions

Innovation by university researchers that diffuses to neraby firms

Air or watter pollution generated in one region spills over to nearby regions

Essentially: “to go beyond and diffuse crossing boundaries”
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Spillovers

o I\/Iathematically the notion of spillover can be thought as the

derlvatlve L+ 0
ax]

e This means that changes to explanatory variables in region |
Impact the dependent variable in region i

¢ In OLS model we have that ax =(
J
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Global spillovers

e Global spillovers

Global spillovers arise when changes in a characteristic of one region impact all
regions’ outcomes.

This applies even to the region itself as impacts can pass to the neighbors and back
to the own region (feedback).

Specifically, global spillovers impact the neighbors, neighbors to the neighbors,
neighbors to the neighbors to the neighbors, etc.

Global spillovers are related to endogenous interactions passing through the
dependent variable y.

SLMy = at, + pWy + X + ¢

SDM:y = at, + pWy + X + WX0 + ¢

They lead to a scenario where changes in one region set in motion a sequence of
adjustments in (potentially) all regions in the sample such that a new long-run steady
state equilibrium arises.
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Local spillovers

e Local spillovers

Local spillovers represent a situation where the impact falls only on nearby
or inmediate neighbors, dying out before they impact regions that are
neighbors to the neighbors.

SLX:y =at, + XL +WX0 + ¢
SDEM:y = at,, + Xf + WXO0 + AWu + ¢

The main difference is that feedback or endogenous interactions are only
possible for global spillovers.

However, depending on the structure of W it could happen that a change in a
exogenous factor in a very distant place j affects the dependent variable of |
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Measuring Spillovers

e Consider the SDM, which can be rewritten as:
y=at, + pWy+ X +WX0 + ¢

y(I —pWy)=XB+WX0 +¢
y=0U-pW) L (XB+WX0 +¢)

3 Br W10k o Winbg
Y _ _1| W210k Br o Wonbg
ﬁ = ([ =pW) : : 5 n Impacts of the system
Wn160k Wn0k . Pr on unit 1
0E(y1) O0E(y1) 0E (y1)
axlk aka axnk
OEL) JE() | 0Em)) |20 950 - 0F0.)
0x1p  O0Xzk 0Xnk alek 0x:2k ) a?fnk
0E(yn) 0E(yn) OE (yn)
Impacts of unit 1 on the rest of \ 0xqj 0xo,  0Xpg

the system
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Measuring spillovers

e Indirect effects: the impact on the observed value of location i given a change in
the explanatory variable X;, in location j is:

0E (yi)
ank
where S, (W);; represents the I,J-th element of the matrix
S(W) = (I — pW) By + WOy ]

=8, (W),

e Direct effects: the impact of the expected value of region i, given a change in
certain variable k for the same region i is given by:

0E (i)
axl-k
This impact includes the effect of feedback loops where observation 1 affects
observation j, and observation j also affects observation i

Thus, a change in x;;, will affect the expected value of dependent variable in i, this
will pass through the neighbors of i (-1 or j) and back to the region itself.

Feedback effects =S, (W);; — Ik

=S (W)
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Measuring spillovers

Example of Elhorst (2010):

e Suppose we have three spatial units that are arranged linearly: unit 1 is a neighbor
of unit 2, unit 2 is a neighbor of both units 1 and 3, and unit 3 is a neighbor of unit

2.
0 1 0
W = <W21 0 W23>
0 1 0
The global spatial multiplier in this system is given by:

1—wy3p® p Wo3p*
= -pW)te (1-p%) PW21 1 PW23
P W, p 1—wyp?

We can get the previous expresion by calculating the inverse analytically (it is very
tedious to do it by hand)

Vicente Rios




Measuring spillovers

1—wy3p® p Wo3p*
= —pW) o 1/(1=p*)|  pwa 1 pW23
P Wy p1—wy3p?

Then, the partial derivatives of our dependent variable with respect a change in x;, are
given by S, (W) = (I — pW) Iy + W6 ]

(aE(w OE(Y) aE(y))

Ox1x  Oxzg 0Xnk

(W210) Bk + W16k Br + pOi (pw23) Bk + Wo36)

Br(1 — Wzspz) + (W10)0k  pPBr + Ok (Wzspz)ﬁk + (pwa3)0
=1/(1-p?)
(Wo10%)Br + (W21p) 6y, PBr + O (1 —wz1p*)Br + (pw33)6k
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Measuring spillovers

Direct effects = diagonal of previous matrix

Indirect effects = every non diagonal elements
What happens with the IEs if p =0 and 9, = 07

<0E<y> OE(Y) aE(y)>

0x1r  0Xok 0Xnk
Bre(1 — wa3p?) + (Wa1p)0k  pBi + Oy (W23p%) B + (pw23) 0k
=1/(1-p?) ( (W210) Bk + w210k B + POy (pw23) Bk + wy30i >
(W21p%)Br + (W1p) 6y, PPBr + Ok (1 —wa1p?) B + (pwWa3)6g

(W210) Bk + wy40 pr + 0 (Ow,3) Bk + wo30

Br(1 —wy30) + (wp10)0 0B +0 (W230) By + (Ow,3)0
=1/(1 - p?)
(W310)Bk + (wp10)0 0Bk +0 (1 —wy0)Bk + (0wy3)0

<0E(y) OE(y) 6E(y)>: ﬁO" ﬁ(») 8
Ox1x  O0Xyp 0Xnk 0 Ok B
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Measuring spillovers

Indirect effects = every non diagonal elements
What happens with the IEs if p # 0 and 8, = 07 (global effects)

(0E(y) OE(y) 05(3/))

0x1,  0Xok 0Xnk
Br(1 — wy3p®) + (Wa1p)0;  pPi + Ok (W23p%)Br + (pwo3) 6y
=1/(1-p?) ( (W210)Br + W16y Bi + POy (pw23) Bi + W36y >
(W21p*) B + (W21p) 0k PPk + Ok (1 —wy1p*)Bi + (pwy3) 0y

(W210) Bk Bk (pw23) Bk

Br(1 — W23P2) + (Wa1p)  pBk (W23P2),[>’k
=1/(1-p?)
(W21P2)ﬁk pBr (11— W21P2)ﬁk

In this case the off-diagonal elements are different from zero so a change in
0E(¥:)
* 0

6xjk
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Measuring spillovers

Indirect effects = every non diagonal elements
What happens with the IEs if p = 0 and 6;, # 07? (local effects)

<0E(y) JE(Y) 05(3/))

0x1x  0Xyk 0X
Bi(1 — wy3p®) + (Wa1p)0;  pPi + Ok (W23p%)Br + (pw23) 0k
=1/(1-p?) ( (W210) Bk + w310k Bi + pOy (pw23) Bk + Wy30k >
(W21p%)Brc + (Wa1p) 6y, PPk + 0k (1 —wy1p*)Bi + (pwo3) 0y

Br Ok 0
=1/(1 - ,02) W10k Br  Wa3bk
0 Ok Bk

In this case the off-diagonal elements are different from zero so a change in ——= (y D2

Local effects: if w;; Is non-zero(zero) then the effect of x;;, on y; is also non zero
(zero).
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Measuring spillovers

The direct effects and indirect effects are different for different units in the
sample

(aE(}’) 0E(y) 0E()’)>
Ox1x  OXxzx  OXxzg
Bre(1 —wy3p?) + (Wp10)0k  pBi + Ok (W230%) B + (pw23) 0y
(W210) Bk + w210k Br + POk (pw23) Bk + Wa30i
(W21p*) Bk + W210)0k PP+ 0k (1 —wy1p*) By + (pW23)6k

For spatial unit 1 the response of y after change in the regressor x; in spatial units 2 and
3 is given by:

0E(y1)  O0E() _

IE(1) = p + = [pBr + O + (W30%) Br + (pwo36))]
X2k dx3p

For spatial unit 2:

0E(y1)  0E(y1) _

IE(2) = 5 + 5 = [(Wp1p) Bk + Wo10k + (pW23) Bi + Wo364]
X2k X3k

These magnitudes can be different depending on connectivity!
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Measuring spillovers

¢ It can be noted that the change of each variable in each region implies
n? potential marginal effects

« If we have K variables in our model, this implies kn? potential
measures

e Even for small vales of n and k it may already be rather difficult to
report these results compactly

e We need summary measures!
Average Direct Effects

Average Indirect Effects
Average Total Effects
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Measuring spillovers

0E(y)

In the SDM the - was given by:
k
Br W10 W1 Ok
= (I — pW)1 W10k Br Won Ok
Wnlgk angk ,Bk

Direct Effects: are the average of the diagonal elements in previous
expression.

Indirect Effects: average row/column off-diagonal elements in previous
expression

To analyze its significance = simulation of the distribution of impacts by
Monte Carlo methods.
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Taxonomy of models

SAC
Spatial Lag Model
A=0
y = pWy+Xp+u
r= p W X
_ AWude y=pWy+XB+e

AT

&
G al nesting spatial del
S R S Spatial durbin model SLX OLS
A=10 v =0
= pWy+XB+WX~vy+u
Y pPWY + X B y = pWy+XB+WXy+e y=XB+ WX~y +e y=Xp+e
u = MWu+4e

s

o

W

Spatial durbin Spatial error model

error model
v=10
y = XB8+WXv+4+u y = XB+tnu
— AWudte u = rAWu+te
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Spatial Model Selection

o Different W matrices imply very distinct measures of spatial autocorrelation,
degree of connectedness, etc.

¢ Different models imply different interpretations for the nature of cross-
regional/countries interactions

¢ Different models may need very different procedures of estimating spillover
effects

e The Questions are:
How to select the correct W?

How to select the correct spatial functional form of the model in my analysis?

In the past = Lagrange multiplier tests or Likelihood ratio tests
In the present and future > Bayesian posterior probabilitites
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Spatial Model Selection

o Posterior model probability is the key object in Bayesian inference:
p(D[6)p(6)
p(0|D) = D)

Givenasetofi = 1,..., m Bayesian models, each would be represented by a
likelihood function and a prior distribution as:
p(D|6%, M)p(6¢|M;)

p(D|M;)
Treating the posterior distribution as conditional on the model specification M; we

can apply Bayes’ rule to expand terms like p(D|M;) which leads to the set of
posterior model probabilities:

p(M;|D) =

p(0'|D, M;) =

p(D|M;)p(M;)

p(D)
This serve as the basis for inference about different models given the sample data.
The term p(D|M;) is called the marginal likelihood:

p(D|M,) = Jp(D|6i,M)p(9i|Mi)d9i
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Spatial Bayesian Model Selection

e We assume a set of alternative spatial models M = M,, M,,..., M,,, as the possible
candidates to explain our data each of them based on a different spatial weight
matrix W while holding fixed other aspects of the specification such as the X or
the functional form (SAR/SDM/SEM/SDEM) fixed.

o Prior probabilitites are specified for each model: = (M;)

« We usually set m(M;) = é making each model equally likely a priori

e Prior distributions for the parameters: () withn = (a, S, p, o)
e The joint probability of the set of models, parameters and data takes the form:
p(M,n,D) = n(M)r(n|M)r(D|n, M)

Application of Bayes’ rule produces the joint posterior for both models and
parameters:

M M) (D|n, M
p(M,nlD)=n( )ﬂ(ni(ggr( In, M)

Posterior model probabilitites requires integration over n leading to:

p(M|D) = j (M, 51D)d 7
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Spatial Bayesian Model Selection

Question: Do Bayesian Model Selection Works Well?

Monte Carlo experiments on the accuracy of the model selection.
- W Selection conditional to the functional form
- Functional form selection given W

Sensitivity checks:
'a] Sample Size
b] Spatial Dependence Intensity

c] Signal-to-noise ratio
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Spatial Bayesian Model Selection

e EXxperiment [A]: W Selection conditional to the functional form.

The true model is:
YY(Wi7) = a+ pWyr Y + ¢Yiq + AWir Y g + X + Wi X0 + €
e Model comparison is carried over alternative K-nearest neighbor's structures,
W(k) =1,..,K so we estimate a number of models by means of Spatial Bayesian
techniques to check if P(Wy-|Y:(Wy7)) > P(Wi | Y (Wy-))

e Sensitivity checks:

Signal-to-noise ratio: o= 2, 5, 10.

Spatio-temporal parameter configurations:
Cl:[p=0.3, ¢ =0.35 4 =-0.1] Medium Spatial Dep
C2:[p=0.7, ¢ =0.35, 1 =-0.2 ] High Spatial Dep
C3:[p=0.1, ¢ =0.35, 1 =-0.2] Low Spatial Dep

Sample Size: European NUTS-2 regions (n=272) vs Spanish Municipalities above
1,000 inhabitants (n=3032).
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Spatial Bayesian Model Selection

Table: Experiment Al: Medium Level of Spatial Dependence in a DSDM

N=272 N=3032
Spatial Matrix | 02 =2 02=5 0°2=10|0°=2 0°=5 o2 =10
knn =1 0.000  0.000 0.000 0.000  0.000 0.000
knn =2 0.000  0.000 0.000 0.000  0.000 0.000
knn =3 0.000  0.000 0.000 0.000  0.000 0.000
knn =4 0.000  0.007 0.014 0.000  0.000 0.000
knn =5 0.033  0.009 0.022 0.000  0.000 0.000
knn =6 0.161  0.122 0.148 0.010  0.020 0.020
knn =7 0.505 0.443 0.406 0.980  0.960 0.942
knn =8 0.209 0.214 0.248 0.010 0.019 0.039
knn =9 0.044  0.119 0.079 0.000  0.000 0.000
knn =10 0.036  0.044 0.044 0.000  0.000 0.000
knn =11 0.000  0.024 0.009 0.000  0.000 0.000
knn =12 0.003  0.004 0.025 0.000  0.000 0.000
knn =13 0.010  0.004 0.002 0.000  0.000 0.000
knn =14 0.000  0.001 0.000 0.000  0.000 0.000
knn =15 0.000  0.010 0.000 0.000  0.000 0.000
knn =20 0.000  0.000 0.004 0.000  0.000 0.000

Notes: Reported results correspond to G; = [p =0.3,¢ = 0.35, A = —0.1]. The implied signal-
to-noise ratios given by 0> =202 =5and 62 =10 are R2 = 0.518, R2 = 0.31 and R2 = 0.194
respectively. R-squared values do not include the contribution of spatial fixed effects.
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Spatial Bayesian Model Selection

Table: Experiment A2: High Level of Spatial Dependence in a DSDM

N=272 N=3032
Spatial Matrix | 0?2 =2 ¢°=5 0°=10|0°=2 o0°=5 o’ =10
knn =1 0.000  0.000 0.000 0.000  0.000 0.000
knn =2 0.000  0.000 0.000 0.000  0.000 0.000
knn =3 0.000  0.000 0.000 0.000  0.000 0.000
knn =4 0.000  0.000 0.000 0.000  0.000 0.000
knn =5 0.000  0.000 0.000 0.000  0.000 0.000
knn =6 0.000  0.000 0.006 0.000  0.000 0.000
knn =7 1.000 1.000 0.994 1.000  1.000 1.000
knn =8 0.000  0.000 0.000 0.000  0.000 0.000
knn =9 0.000  0.000 0.000 0.000  0.000 0.000
knn =10 0.000  0.000 0.000 0.000  0.000 0.000
knn =11 0.000  0.000 0.000 0.000  0.000 0.000
knn =12 0.000  0.000 0.000 0.000  0.000 0.000
knn =13 0.000  0.000 0.000 0.000  0.000 0.000
knn =14 0.000  0.000 0.000 0.000  0.000 0.000
knn =15 0.000  0.000 0.000 0.000  0.000 0.000
knn =20 0.000  0.000 0.000 0.000  0.000 0.000

Notes: Reported results correspond to G; = [p = 0.7,¢ = 0.35, A = —0.2]. The implied signal-
to-noise ratios given by o2 = 2,62 = 5 and o2 = 10 are R2 = 0.643, R2 = 0.459 and R2 = 0.331
respectively. R-squared values do not include the contribution of spatial fixed effects.
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Spatial Bayesian Model Averaging

Table: Experiment A3: Low Level of Spatial Dependence in a DSDM

N=272 N=3032
Spatial Matrix | 0> =2 0°=5 0°=10|02=2 o0°=5 0? =10
knn = 0.020  0.063 0.003 0.000  0.000 0.000
knn =2 0.048  0.031 0.054 0.010 0.010 0.000
knn =3 0.048  0.029 0.057 0.010  0.000 0.005
knn =4 0.037  0.058 0.087 0.049  0.041 0.067
knn =5 0.075  0.063 0.068 0.061  0.084 0.060
knn =6 0.077  0.025 0.081 0.133  0.096 0.102
knn =7 0.140  0.105 0.070 0.225  0.230 0.223
knn =8 0.074  0.087 0.094 0.177  0.150 0.168
knn =9 0.069  0.065 0.066 0.119 0.128 0.068
knn =10 0.085  0.081 0.066 0.085 0.074 0.117
knn =11 0.054  0.066 0.102 0.061  0.041 0.043
knn =12 0.084  0.052 0.067 0.025  0.035 0.073
knn =13 0.063  0.029 0.038 0.004 0.072 0.023
knn =14 0.028  0.119 0.063 0.020 0.022 0.039
knn =15 0.021  0.052 0.043 0.022  0.010 0.001
knn =20 0.077  0.076 0.041 0.000  0.008 0.010

Notes: Reported results correspond to Gz = [p=0.1,¢ = 0.35, A = —0.2]. The implied signal-
to-noise ratios given by 02 =2,02 =5and 62 = 10 are R2 = 0.533, R2 = 0.338 and R2 = 0.228
respectively. R-squared values do not include the contribution of spatial fixed effects.
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Spatial Bayesian Model Selection

e EXxperiment [B]: Functional form Selection conditional to W
The true model is a Dynamic SDM

Y, =a+ pWY + ¢Y, + WY, + X, B+ WX, 0 + ¢,
e Model comparison is carried over alternative spatial functional forms:
DSEM:Y; = a + @Y1 + AWY,_1 + X5 + pWu, + &
DSLM: Y; = a + pWY; + Yy + AWY,_ 1 + X0 + &
DSDEM: Y, = a + @Y,y + AWY,_; + X, B+ WX.0 + pWu, + &

e Sensitivity checks:

Signal-to-noise ratio: o= 2, 5, 10.

Spatio-temporal parameter configurations:
Cl:[p=0.3, ¢ =0.35 4 =-0.1] Medium Spatial Dep
C2:[p=0.7, ¢ =0.35, 4 =-0.2 ] High Spatial Dep
C3:[p=0.1, ¢ =0.35, 1 =-0.2] Low Spatial Dep

Sample Size: European NUTS-2 regions (n=272) vs Spanish Municipalities above
1,000 inhabitants (n=3032).
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Spatial Bayesian Model Selection

Table: Experiment B1: Baseline Level of Spatial Dependence

02 =2 02 =5 02 =10
Wn—o72 | SDM SLM SDEM SEM | SDM SLM SDEM SEM | SDM SLM SDEM SEM
kon=5 096 0.04 000 0.00 095 005 000 000 083 017 000 0.00
knn=6 096 004 000 000 095 005 000 000 08 018 000 0.00
knn=7 096 0.04 000 0.00 095 005 000 000 083 017 000 0.00
knn=8 0096 004 000 000 095 005 000 000 08 018 000 0.00
knn=0 096 004 000 0.00 095 005 000 000 082 018 000 0.00
kon=10 096 004 000 000 095 005 000 000 083 017 000 0.00
Wpn—3032 | SDM SLM SDEM SEM | SDM SLM SDEM SEM [ SDM SLM SDEM SEM
knn=5 | 1.00 000 000 000 1.00 000 000 000  1.00 000 000 0.00
knn=6  1.00 0.0 000 0.00 1.00 000 000 0.0 1.00 0.00 0.00 0.00
knn=7  1.00 000 000 000 1.00 000 000 000 1.00 000 000 0.00
kon=8  1.00 0.00 000 0.0 1.00 000 000 0.00 1.00 0.00 0.00 0.00
knn=0  1.00 000 000 000 1.00 000 000 000 1.00 000 000 0.00
knn=10 ~ 1.00 0.00 000 0.00 1.00 000 000 0.00 1.00 0.00 0.00 0.00
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Spatial Bayesian Model Selection

Table: Experiment B2: High Level of Spatial Dependence

g =2 0> =5 o’ =10
Wyn=272 | SDM SLM SDEM SEM | SDM SLM SDEM SEM | SDM SLM SDEM SEM
knn=b 0.996 0.004 0.000 0.000 | 0.788 0.212 0.000 0.000 [ 0.735 0.265 0.000 0.000
knn=6 0.996 0.004 0.000 0.000 | 0.788 0.212 0.000 0.000 [ 0.735 0.265 0.000 0.000
knn=7 0.996 0.004 0.000 0.000 | 0.788 0.212 0.000 0.000 [ 0.735 0.265 0.000 0.000
knn=8 0.996 0.004 0.000 0.000 | 0.789 0.211 0.000 0.000 [ 0.725 0.275 0.000 0.000
knn=9 0.996 0.004 0.000 0.000 | 0.789 0.211 0.000 0.000 [ 0.724 0.276 0.000 0.000
knn=10 0.996 0.004 0.000 0.000 | 0.789 0.211 0.000 0.000 | 0.724 0.276 0.000 0.000
Wpyn=3032 | SDM SLM SDEM SEM | SDM SLM SDEM SEM | SDM SLM SDEM SEM
knn=5 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 | 0.95 0.05 0.00  0.00
knn=6 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 | 0.95 0.05 0.00  0.00
knn=7 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 | 0.95 0.05 0.00  0.00
knn=8 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 | 0.95 0.05 0.00  0.00
knn=9 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 | 0.95 0.05 0.00  0.00
knn=10 1.00 0.00 0.00 0.00 | 1.00 0.00 0.00 0.00 | 0.95 0.05 0.00  0.00
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Spatial Bayesian Model Selection

Table: Experiment B3: Low Level of Spatial Dependence

02 =2 0> =5 0’ =10
Wyn=272 | SDM SLM SDEM SEM | SDM SLM SDEM SEM | SDM SLM SDEM SEM
knn=>b 099 001 000 0.00 098 0.02 000 000 089 011 0.00 0.00
knn=06 099 001 000 0.00 098 002 000 000 089 011 0.00 0.00
knn=7 099 001 000 0.00 098 0.02 000 000 090 010 0.00 0.00
knn=38 099 001 000 0.00 097 003 000 000 090 010 0.00 0.00
knn=9 099 001 000 000 097/ 003 000 000 090 010 0.00 0.00
knn=10 099 001 000 0.00 097/ 003 000 000 090 010 0.00 0.00
Wpyn=3032 | SDM SLM SDEM SEM | SDM SLM SDEM SEM | SDM SLM SDEM SEM
knn=>b 1.00 000 000 000 100 000 0.00 0.00 095 0.05 0.00 0.00
knn=06 1.00 000 000 000 100 000 0.00 0.00 095 0.05 0.00 0.00
knn=7 1.00 000 000 000 100 000 0.00 0.00 095 0.05 0.00 0.00
knn=28 1.00 000 000 000 100 000 0.00 0.00 095 0.05 0.00 0.00
knn=9 1.00 000 000 000 100 000 0.00 0.00 095 0.05 0.00 0.00
knn=10 ~ 1.00 0.00 0.00 0.00 100 0.00 000 000 095 005 0.00 0.00
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Spatial Bayesian Model Selection

e Summing up

o Bayesian model selection in the context of dynamic spatial panel data models is
highly accurate (this also holds for the cross-sections or static spatial panels)

e Accuracy increases with sample size, with a higher signal to noise ratio and with the
intensity of spatial dependence

¢ Bayesian model selection performs better finding true models among alternative
spatial specifications than across alternative spatial weight matrices
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